Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38866022

ABSTRACT

Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.

2.
J Med Internet Res ; 25: e45268, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37067865

ABSTRACT

BACKGROUND: Patients and families need to be provided with trusted information more than ever with the abundance of online information. Several organizations aim to build databases that can be searched based on the needs of target groups. One such group is individuals with neurodevelopmental disorders (NDDs) and their families. NDDs affect up to 18% of the population and have major social and economic impacts. The current limitations in communicating information for individuals with NDDs include the absence of shared terminology and the lack of efficient labeling processes for web resources. Because of these limitations, health professionals, support groups, and families are unable to share, combine, and access resources. OBJECTIVE: We aimed to develop a natural language-based pipeline to label resources by leveraging standard and free-text vocabularies obtained through text analysis, and then represent those resources as a weighted knowledge graph. METHODS: Using a combination of experts and service/organization databases, we created a data set of web resources for NDDs. Text from these websites was scraped and collected into a corpus of textual data on NDDs. This corpus was used to construct a knowledge graph suitable for use by both experts and nonexperts. Named entity recognition, topic modeling, document classification, and location detection were used to extract knowledge from the corpus. RESULTS: We developed a resource annotation pipeline using diverse natural language processing algorithms to annotate web resources and stored them in a structured knowledge graph. The graph contained 78,181 annotations obtained from the combination of standard terminologies and a free-text vocabulary obtained using topic modeling. An application of the constructed knowledge graph is a resource search interface using the ordered weighted averaging operator to rank resources based on a user query. CONCLUSIONS: We developed an automated labeling pipeline for web resources on NDDs. This work showcases how artificial intelligence-based methods, such as natural language processing and knowledge graphs for information representation, can enhance knowledge extraction and mobilization, and could be used in other fields of medicine.


Subject(s)
Natural Language Processing , Neurodevelopmental Disorders , Humans , Algorithms , Artificial Intelligence , Pattern Recognition, Automated , Knowledge Bases
3.
J Med Internet Res ; 24(8): e39888, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35930346

ABSTRACT

BACKGROUND: Understanding how individuals think about a topic, known as the mental model, can significantly improve communication, especially in the medical domain where emotions and implications are high. Neurodevelopmental disorders (NDDs) represent a group of diagnoses, affecting up to 18% of the global population, involving differences in the development of cognitive or social functions. In this study, we focus on 2 NDDs, attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), which involve multiple symptoms and interventions requiring interactions between 2 important stakeholders: parents and health professionals. There is a gap in our understanding of differences between mental models for each stakeholder, making communication between stakeholders more difficult than it could be. OBJECTIVE: We aim to build knowledge graphs (KGs) from web-based information relevant to each stakeholder as proxies of mental models. These KGs will accelerate the identification of shared and divergent concerns between stakeholders. The developed KGs can help improve knowledge mobilization, communication, and care for individuals with ADHD and ASD. METHODS: We created 2 data sets by collecting the posts from web-based forums and PubMed abstracts related to ADHD and ASD. We utilized the Unified Medical Language System (UMLS) to detect biomedical concepts and applied Positive Pointwise Mutual Information followed by truncated Singular Value Decomposition to obtain corpus-based concept embeddings for each data set. Each data set is represented as a KG using a property graph model. Semantic relatedness between concepts is calculated to rank the relation strength of concepts and stored in the KG as relation weights. UMLS disorder-relevant semantic types are used to provide additional categorical information about each concept's domain. RESULTS: The developed KGs contain concepts from both data sets, with node sizes representing the co-occurrence frequency of concepts and edge sizes representing relevance between concepts. ADHD- and ASD-related concepts from different semantic types shows diverse areas of concerns and complex needs of the conditions. KG identifies converging and diverging concepts between health professionals literature (PubMed) and parental concerns (web-based forums), which may correspond to the differences between mental models for each stakeholder. CONCLUSIONS: We show for the first time that generating KGs from web-based data can capture the complex needs of families dealing with ADHD or ASD. Moreover, we showed points of convergence between families and health professionals' KGs. Natural language processing-based KG provides access to a large sample size, which is often a limiting factor for traditional in-person mental model mapping. Our work offers a high throughput access to mental model maps, which could be used for further in-person validation, knowledge mobilization projects, and basis for communication about potential blind spots from stakeholders in interactions about NDDs. Future research will be needed to identify how concepts could interact together differently for each stakeholder.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Attention Deficit Disorder with Hyperactivity/diagnosis , Autism Spectrum Disorder/diagnosis , Humans , Models, Psychological , Natural Language Processing , Pattern Recognition, Automated
4.
Am J Hum Genet ; 98(5): 1038-1046, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27153400

ABSTRACT

Hereditary spastic paraplegia (HSP) is a genetically and clinically heterogeneous disease characterized by spasticity and weakness of the lower limbs with or without additional neurological symptoms. Although more than 70 genes and genetic loci have been implicated in HSP, many families remain genetically undiagnosed, suggesting that other genetic causes of HSP are still to be identified. HSP can be inherited in an autosomal-dominant, autosomal-recessive, or X-linked manner. In the current study, we performed whole-exome sequencing to analyze a total of nine affected individuals in three families with autosomal-recessive HSP. Rare homozygous and compound-heterozygous nonsense, missense, frameshift, and splice-site mutations in CAPN1 were identified in all affected individuals, and sequencing in additional family members confirmed the segregation of these mutations with the disease (spastic paraplegia 76 [SPG76]). CAPN1 encodes calpain 1, a protease that is widely present in the CNS. Calpain 1 is involved in synaptic plasticity, synaptic restructuring, and axon maturation and maintenance. Three models of calpain 1 deficiency were further studied. In Caenorhabditis elegans, loss of calpain 1 function resulted in neuronal and axonal dysfunction and degeneration. Similarly, loss-of-function of the Drosophila melanogaster ortholog calpain B caused locomotor defects and axonal anomalies. Knockdown of calpain 1a, a CAPN1 ortholog in Danio rerio, resulted in abnormal branchiomotor neuron migration and disorganized acetylated-tubulin axonal networks in the brain. The identification of mutations in CAPN1 in HSP expands our understanding of the disease causes and potential mechanisms.


Subject(s)
Axons/pathology , Calpain/genetics , Genetic Predisposition to Disease/genetics , Motor Neurons/pathology , Spastic Paraplegia, Hereditary/genetics , Adult , Animals , Brain/physiology , Caenorhabditis elegans/genetics , Cell Movement/genetics , Disease Models, Animal , Drosophila melanogaster/genetics , Female , Humans , Male , Motor Neurons/cytology , Young Adult , Zebrafish/genetics
5.
Hum Mol Genet ; 25(6): 1088-99, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26744324

ABSTRACT

Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative diseases causing progressive gait dysfunction. Over 50 genes have now been associated with HSP. Despite the recent explosion in genetic knowledge, HSP remains without pharmacological treatment. Loss-of-function mutation of the SPAST gene, also known as SPG4, is the most common cause of HSP in patients. SPAST is conserved across animal species and regulates microtubule dynamics. Recent studies have shown that it also modulates endoplasmic reticulum (ER) stress. Here, utilizing null SPAST homologues in C. elegans, Drosophila and zebrafish, we tested FDA-approved compounds known to modulate ER stress in order to ameliorate locomotor phenotypes associated with HSP. We found that locomotor defects found in all of our spastin models could be partially rescued by phenazine, methylene blue, N-acetyl-cysteine, guanabenz and salubrinal. In addition, we show that established biomarkers of ER stress levels correlated with improved locomotor activity upon treatment across model organisms. Our results provide insights into biomarkers and novel therapeutic avenues for HSP.


Subject(s)
Disease Models, Animal , Spastic Paraplegia, Hereditary/drug therapy , Adenosine Triphosphatases/genetics , Animals , Caenorhabditis elegans , Drosophila , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Female , Humans , Locomotion/drug effects , Locomotion/genetics , Microtubules/drug effects , Microtubules/metabolism , Mutation , Phenazines/pharmacology , Phenotype , Spastic Paraplegia, Hereditary/genetics , Zebrafish
6.
Am J Med Genet A ; 173(4): 972-977, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28328126

ABSTRACT

As genome wide techniques become more common, an increasing proportion of patients with intellectual disability (ID) are found to have genetic defects allowing genotype-phenotype correlations. Previously, AKT3 deletion was suggested to be responsible for microcephaly in patients with 1q43-q44 deletion syndrome, but this does not correspond to all cases. We report a case of a de novo 1q44 deletion in an 8-year-old boy with microcephaly in whom AKT3 is not deleted. We used a systematic review of the literature, our patient, and network analysis to gain a better understanding of the genetic basis of microcephaly in 1q deletion patients. Our analysis showed that while AKT3 deletion is associated with more severe (≤3 SD) microcephaly in 1q43-q44 deletion patients, other genes may contribute to microcephaly in AKT3 intact patients with microcephaly and 1q43-44 deletion syndrome. We identified a potential role for HNRNPU, SMYD3, NLRP3, and KIF26B in microcephaly. Overall, our study highlights the need for network analysis and quantitative measures reporting in the phenotypic analysis of a complex genetic syndrome related to copy number variation.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 1/chemistry , Gene Regulatory Networks , Intellectual Disability/genetics , Microcephaly/genetics , Proto-Oncogene Proteins c-akt/genetics , Child , Computational Biology , DNA Copy Number Variations , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Kinesins/genetics , Male , Microcephaly/diagnosis , Microcephaly/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phenotype
7.
J Neurosci ; 35(1): 396-408, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25568131

ABSTRACT

Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Disease Models, Animal , Fragile X Syndrome/enzymology , Neuronal Plasticity/physiology , Phosphodiesterase 4 Inhibitors/pharmacology , Animals , Animals, Genetically Modified , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Drosophila , Female , Fragile X Syndrome/drug therapy , Fragile X Syndrome/genetics , Male , Mice , Mice, Knockout , Neuronal Plasticity/drug effects , Phosphodiesterase 4 Inhibitors/therapeutic use
9.
J Autism Dev Disord ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653851

ABSTRACT

The purpose of this paper was to examine the physical, emotional, social and school functioning domains of quality of life of individuals with Fragile X Syndrome, in relation to mental health and sleep patterns to gain a better understanding of how these aspects are affected by the disorder. This study included 119 individuals with Fragile X Syndrome who were given different cognitive examinations by a neuropsychologist or by parent-proxy questionnaires. This study focused on the Pediatric Quality of Life Inventory (PedsQoL), the Anxiety, Depression and Mood Scale (ADAMS), the Children's Sleep Habits Questionnaire (CSHQ), but did include other cognitive tests (Vineland Adaptive Behaviour Scales, Nonverbal IQ, Autism Diagnostic Observation Schedule). We identified significant associations between decreases in emotional, social and school domains of PedsQoL and the ADAMS subtests of Generalized Anxiety, Manic/Hyperactivity and Obsessive/Compulsivity, with the subtest of Depressed Mood having associations with lower physical and emotional domains. We also identified a significant impact between CSHQ subtests of Sleep Anxiety, Night Wakings, Daytime Sleepiness, and Parasomnia with the emotional and school domains of PedsQoL. There were associations connecting school functioning with Bedtime Resistance, and additional associations connecting emotional functioning with Sleep Duration and Sleep Onset Delay. Physical functioning was also associated with Sleep Anxiety. Our study shows how mental health and sleep defects impact improper sleep patterns and mental health which leads to decreases in the quality of life for individuals with FXS, and how it is important to screen for these symptoms in order to alleviate issues.

10.
Front Psychol ; 15: 1305597, 2024.
Article in English | MEDLINE | ID: mdl-38939222

ABSTRACT

Introduction: Metformin has been used as a targeted treatment to potentially improve cognition and slow the typical IQ decline that occurs during development among individuals with fragile X syndrome (FXS). In this follow-up study, we are following the trajectory of IQ and adaptive behavior changes over 1 to 3 years in individuals with FXS who are clinically treated with metformin in an open label trial. Method: Individuals with FXS ages 6 to 25 years (mean 13.15 ± 5.50) and nonverbal IQ mean 57.69 (±15.46) were treated for 1-3 years (1.88 ± 0.63). They all had a baseline IQ test using the Leiter-III non-verbal cognitive assessment and the Vineland-III adaptive behavior assessment before the start of metformin. Repeat Leiter-III and Vineland-III were completed after at least 1 year of metformin (500-1,000 mg/dose given twice a day). Result: There were no significant changes in non-verbal IQ or in the adaptive behavior measurements at FDR < 0.05. The findings thus far indicate that both IQ and adaptive behavior are stable over time, and we did not see a significant decline in either measure. Conclusion: Overall, the small sample size and short follow-up duration limit the interpretation of the effects of metformin on cognitive development and adaptive functioning. There is individual variability but overall for the group there was no significant decline in IQ or adaptive behavior.

11.
JMIR Pediatr Parent ; 6: e39720, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37155237

ABSTRACT

BACKGROUND: Neurodevelopmental disorders (NDD) cause individuals to have difficulty in learning facts, procedures, or social skills. NDD has been linked to several genes, and several animal models have been used to identify potential therapeutic candidates based on specific learning paradigms for long-term and associative memory. In individuals with NDD, however, such testing has not been used so far, resulting in a gap in translating preclinical results to clinical practice. OBJECTIVE: We aim to assess if individuals with NDD could be tested for paired association learning and long-term memory deficit, as shown in previous animal models. METHODS: We developed an image-based paired association task, which can be performed at different time points using remote web-based testing, and evaluated its feasibility in children with typical development (TD), as well as NDD. We included 2 tasks: object recognition as a simpler task and paired association. Learning was tested immediately after training and also the next day for long-term memory. RESULTS: We found that children aged 5-14 years with TD (n=128) and with NDD of different types (n=57) could complete testing using the Memory Game. Children with NDD showed deficits in both recognition and paired association tasks on the first day of learning, in both 5-9-year old (P<.001 and P=.01, respectively) and 10-14-year old groups (P=.001 and P<.001, respectively). The reaction times to stimuli showed no significant difference between individuals with TD or NDD. Children with NDD exhibited a faster 24-hour memory decay for the recognition task than those with TD in the 5-9-year old group. This trend is reversed for the paired association task. Interestingly, we found that children with NDD had their retention for recognition improved and matched with typically developing individuals by 10-14 years of age. The NDD group also showed improved retention deficits in the paired association task at 10-14 years of age compared to the TD group. CONCLUSIONS: We showed that web-based learning testing using simple picture association is feasible for children with TD, as well as with NDD. We showed how web-based testing allows us to train children to learn the association between pictures, as shown in immediate test results and those completed 1 day after. This is important as many models for learning deficits in NDD target both short- and long-term memory for therapeutic intervention. We also demonstrated that despite potential confounding factors, such as self-reported diagnosis bias, technical issues, and varied participation, the Memory Game shows significant differences between typically developing children and those with NDD. Future experiments will leverage this potential of web-based testing for larger cohorts and cross-validation with other clinical or preclinical cognitive tasks.

12.
Front Pediatr ; 11: 1172154, 2023.
Article in English | MEDLINE | ID: mdl-37609366

ABSTRACT

Objective: Gain a better understanding of sex-specific differences in individuals with global developmental delay (GDD), with a focus on phenotypes and genotypes. Methods: Using the Deciphering Developmental Disorders (DDD) dataset, we extracted phenotypic information from 6,588 individuals with GDD and then identified statistically significant variations in phenotypes and genotypes based on sex. We compared genes with pathogenic variants between sex and then performed gene network and molecular function enrichment analysis and gene expression profiling between sex. Finally, we contrasted individuals with autism as an associated condition. Results: We identified significantly differentially expressed phenotypes in males vs. females individuals with GDD. Autism and macrocephaly were significantly more common in males whereas microcephaly and stereotypies were more common in females. Importantly, 66% of GDD genes with pathogenic variants overlapped between both sexes. In the cohort, males presented with only slightly increased X-linked genes (9% vs. 8%, respectively). Individuals from both sexes harbored a similar number of pathogenic variants overall (3) but females presented with a significantly higher load for GDD genes with high intolerance to loss of function. Sex difference in gene expression correlated with genes identified in a sex specific manner. While we identified sex-specific GDD gene mutations, their pathways overlapped. Interestingly, individuals with GDD but also co-morbid autism phenotypes, we observed distinct mutation load, pathways and phenotypic presentation. Conclusion: Our study shows for the first time that males and females with GDD present with significantly different phenotypes. Moreover, while most GDD genes overlapped, some genes were found uniquely in each sex. Surprisingly they shared similar molecular functions. Sorting genes by predicted tolerance to loss of function (pLI) led to identifying an increased mutation load in females with GDD, suggesting potentially a tolerance to GDD genes of higher pLI compared to overall GDD genes. Finally, we show that considering associated conditions (for instance autism) may influence the genomic underpinning found in individuals with GDD and highlight the importance of comprehensive phenotyping.

13.
Front Pediatr ; 11: 1171920, 2023.
Article in English | MEDLINE | ID: mdl-37790694

ABSTRACT

Objective: Individuals with neurodevelopmental disorders such as global developmental delay (GDD) present both genotypic and phenotypic heterogeneity. This diversity has hampered developing of targeted interventions given the relative rarity of each individual genetic etiology. Novel approaches to clinical trials where distinct, but related diseases can be treated by a common drug, known as basket trials, which have shown benefits in oncology but have yet to be used in GDD. Nonetheless, it remains unclear how individuals with GDD could be clustered. Here, we assess two different approaches: agglomerative and divisive clustering. Methods: Using the largest cohort of individuals with GDD, which is the Deciphering Developmental Disorders (DDD), characterized using a systematic approach, we extracted genotypic and phenotypic information from 6,588 individuals with GDD. We then used a k-means clustering (divisive) and hierarchical agglomerative clustering (HAC) to identify subgroups of individuals. Next, we extracted gene network and molecular function information with regard to the clusters identified by each approach. Results: HAC based on phenotypes identified in individuals with GDD revealed 16 clusters, each presenting with one dominant phenotype displayed by most individuals in the cluster, along with other minor phenotypes. Among the most common phenotypes reported were delayed speech, absent speech, and seizure. Interestingly, each phenotypic cluster molecularly included several (3-12) gene sub-networks of more closely related genes with diverse molecular function. k-means clustering also segregated individuals harboring those phenotypes, but the genetic pathways identified were different from the ones identified from HAC. Conclusion: Our study illustrates how divisive (k-means) and agglomerative clustering can be used in order to group individuals with GDD for future basket trials. Moreover, the result of our analysis suggests that phenotypic clusters should be subdivided into molecular sub-networks for an increased likelihood of successful treatment. Finally, a combination of both agglomerative and divisive clustering may be required for developing of a comprehensive treatment.

14.
Cells ; 12(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37508583

ABSTRACT

This study contributes to a greater understanding of the utility of molecular biomarkers to identify clinical phenotypes of fragile X syndrome (FXS). Correlations of baseline clinical trial data (molecular measures-FMR1 mRNA, CYFIP1 mRNA, MMP9 and FMRP protein expression levels, nonverbal IQ, body mass index and weight, language level, NIH Toolbox, adaptive behavior rating, autism, and other mental health correlates) of 59 participants with FXS ages of 6-32 years are reported. FMR1 mRNA expression levels correlated positively with adaptive functioning levels, expressive language, and specific NIH Toolbox measures. The findings of a positive correlation of MMP-9 levels with obesity, CYFIP1 mRNA with mood and autistic symptoms, and FMR1 mRNA expression level with better cognitive, language, and adaptive functions indicate potential biomarkers for specific FXS phenotypes. These may be potential markers for future clinical trials for targeted treatments of FXS.


Subject(s)
Fragile X Syndrome , Humans , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Phenotype , Biomarkers , RNA, Messenger/metabolism
15.
Int J Dev Neurosci ; 83(8): 715-727, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37724826

ABSTRACT

This study aimed to determine the association between severity of autism spectrum disorder (ASD) and cognitive, behavioral, and molecular measures in individuals with fragile X syndrome (FXS). Study inclusion criteria included individuals with FXS and (1) age 6-40 years, (2) full-scale IQ < 84, and (3) language ≥3-word phrases. ASD symptom severity was determined by Autism Diagnostic Observation Schedule-2 (ADOS-2). Other measures identified non-verbal IQ, adaptive skills, and aberrant behaviors. Molecular measures included blood FMR1 and CYFIP1 mRNA levels, FMRP and MMP9 levels. Analysis of variance (ANOVA) and Spearman's correlations were used to compare ASD severity groups. Data from 54 individuals was included with no/mild (N = 7), moderate (N = 18), and severe (N = 29) ASD. Individuals with high ASD severity had lower adaptive behavior scores (47.48 ± 17.49) than the no/mild group (69.00 ± 20.45, p = 0.0366); they also had more challenging behaviors, lethargy, and stereotypic behaviors. CYFIP1 mRNA expression levels positively correlated with the ADOS-2 comparison score(r2  = 0.33, p = 0.0349), with no significant correlations with other molecular markers. In conclusion, autism symptom severity is associated with more adverse cognitive and adaptive skills and specific behaviors in FXS, whereas CYFIP1 mRNA expression levels may be a potential biomarker for severity of ASD in FXS.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Humans , Child , Adolescent , Young Adult , Adult , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology , Autistic Disorder/genetics , RNA, Messenger , Cognition , Fragile X Mental Retardation Protein
16.
JMIR Hum Factors ; 9(3): e31991, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35984679

ABSTRACT

BACKGROUND: Chatbots have been increasingly considered for applications in the health care field. However, it remains unclear how a chatbot can assist users with complex health needs, such as parents of children with neurodevelopmental disorders (NDDs) who need ongoing support. Often, this population must deal with complex and overwhelming health information, which can make parents less likely to use a software that may be very helpful. An approach to enhance user engagement is incorporating game elements in nongame contexts, known as gamification. Gamification needs to be tailored to users; however, there has been no previous assessment of gamification use in chatbots for NDDs. OBJECTIVE: We sought to examine how gamification elements are perceived and whether their implementation in chatbots will be well received among parents of children with NDDs. We have discussed some elements in detail as the initial step of the project. METHODS: We performed a narrative literature review of gamification elements, specifically those used in health and education. Among the elements identified in the literature, our health and social science experts in NDDs prioritized five elements for in-depth discussion: goal setting, customization, rewards, social networking, and unlockable content. We used a qualitative approach, which included focus groups and interviews with parents of children with NDDs (N=21), to assess the acceptability of the potential implementation of these elements in an NDD-focused chatbot. Parents were asked about their opinions on the 5 elements and to rate them. Video and audio recordings were transcribed and summarized for emerging themes, using deductive and inductive thematic approaches. RESULTS: From the responses obtained from 21 participants, we identified three main themes: parents of children with NDDs were familiar with and had positive experiences with gamification; a specific element (goal setting) was important to all parents, whereas others (customization, rewards, and unlockable content) received mixed opinions; and the social networking element received positive feedback, but concerns about information accuracy were raised. CONCLUSIONS: We showed for the first time that parents of children with NDDs support gamification use in a chatbot for NDDs. Our study illustrates the need for a user-centered design in the medical domain and provides a foundation for researchers interested in developing chatbots for populations that are medically vulnerable. Future studies exploring wide range of gamification elements with large number of potential users are needed to understand the impact of gamification elements in enhancing knowledge mobilization.

17.
Proc Natl Acad Sci U S A ; 105(34): 12399-404, 2008 Aug 26.
Article in English | MEDLINE | ID: mdl-18701717

ABSTRACT

Angelman syndrome is a neurological disorder whose symptoms include severe mental retardation, loss of motor coordination, and sleep disturbances. The disease is caused by a loss of function of UBE3A, which encodes a HECT-domain ubiquitin ligase. Here, we generate a Drosophila model for the disease. The results of several experiments show that the functions of human UBE3A and its fly counterpart, dube3a, are similar. First, expression of Dube3a is enriched in the Drosophila nervous system, including mushroom bodies, the seat of learning and memory. Second, we have generated dube3a null mutants, and they appear normal externally, but display abnormal locomotive behavior and circadian rhythms, and defective long-term memory. Third, flies that overexpress Dube3a in the nervous system also display locomotion defects, dependent on the ubiquitin ligase activity. Finally, missense mutations in UBE3A alleles of Angelman syndrome patients alter amino acid residues conserved in the fly protein, and when introduced into dube3a, behave as loss-of-function mutations. The simplest model for Angelman syndrome is that in the absence of UBE3A, particular substrates fail to be ubiquitinated and proteasomally degraded, accumulate in the brain, and interfere with brain function. We have generated flies useful for genetic screens to identify Dube3a substrates. These flies overexpress Dube3a in the eye or wing and display morphological abnormalities, dependent on the critical catalytic cysteine. We conclude that dube3a mutants are a valid model for Angelman syndrome, with great potential for identifying the elusive UBE3A substrates relevant to the disease.


Subject(s)
Angelman Syndrome/genetics , Drosophila Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Circadian Rhythm/genetics , Disease Models, Animal , Drosophila , Drosophila Proteins/physiology , Eye/chemistry , Gene Expression , Humans , Locomotion/genetics , Morphogenesis/genetics , Mutation , Nervous System/chemistry , Phenotype , Ubiquitin-Protein Ligases/physiology , Wings, Animal/chemistry
18.
Front Psychiatry ; 12: 731011, 2021.
Article in English | MEDLINE | ID: mdl-34899415

ABSTRACT

The challenges of caring for children with complex health needs, such as intellectual disability (ID) and autism spectrum disorder (ASD), are multiple and experienced by both caregivers and health professionals. Fragile X syndrome (FXS) is the most common single gene cause of ID and ASD, and provides a pertinent model to understand these complexities of care, as well as the communication challenges experienced between caregivers and healthcare professionals. In recent years both caregivers and healthcare professionals have recognized the need for enhancing communication both in clinical and research settings. Knowledge mapping has emerged as a tool to support quality communication between team participants. Here we review how differences in mental models, as well as challenges related to health literacy and knowledge transfer can have an impact on communication. Next, we present different knowledge mapping approaches used in complex situations, with a focus on concept maps and care maps. Finally, we highlight the potential benefits and limitations of mapping to improve communication issues related to caring for individuals with FXS and potentially other neurodevelopmental disorders (NDDs).

19.
Front Psychiatry ; 12: 730987, 2021.
Article in English | MEDLINE | ID: mdl-34733188

ABSTRACT

Fragile X syndrome (FXS) is the most common single-gene cause of intellectual disability and autism spectrum disorder. Individuals with FXS present with a wide range of severity in multiple phenotypes including cognitive delay, behavioral challenges, sleep issues, epilepsy, and anxiety. These symptoms are also shared by many individuals with other neurodevelopmental disorders (NDDs). Since the discovery of the FXS gene, FMR1, FXS has been the focus of intense preclinical investigation and is placed at the forefront of clinical trials in the field of NDDs. So far, most studies have aimed to translate the rescue of specific phenotypes in animal models, for example, learning, or improving general cognitive or behavioral functioning in individuals with FXS. Trial design, selection of outcome measures, and interpretation of results of recent trials have shown limitations in this type of approach. We propose a new paradigm in which all phenotypes involved in individuals with FXS would be considered and, more importantly, the possible interactions between these phenotypes. This approach would be implemented both at the baseline, meaning when entering a trial or when studying a patient population, and also after the intervention when the study subjects have been exposed to the investigational product. This approach would allow us to further understand potential trade-offs underlying the varying effects of the treatment on different individuals in clinical trials, and to connect the results to individual genetic differences. To better understand the interplay between different phenotypes, we emphasize the need for preclinical studies to investigate various interrelated biological and behavioral outcomes when assessing a specific treatment. In this paper, we present how such a conceptual shift in preclinical design could shed new light on clinical trial results. Future clinical studies should take into account the rich neurodiversity of individuals with FXS specifically and NDDs in general, and incorporate the idea of trade-offs in their designs.

20.
PLoS One ; 15(1): e0227938, 2020.
Article in English | MEDLINE | ID: mdl-31990931

ABSTRACT

OBJECTIVES: Nutritional intake during gestation is known to impact health outcomes for progeny. Correlational evidence in humans suggests that increased fruit consumption of pregnant mothers enhances infant cognitive development. Moreover, wild-type Drosophila supplemented with a combination of orange and tomato juice showed robust enhancements in performance on an associative olfactory memory task. The current study aimed to experimentally test the effects of prenatal fruit juice exposure in a non-human, mammalian model of learning and memory. METHODS: Across three separate birth cohorts, pregnant rats were given access to diluted tomato and orange juice (N = 2 per cohort), with control rats (N = 2 per cohort) receiving only water, in addition to standard rodent chow, throughout the duration of gestation, ending at parturition. Following weaning, male offspring were tested for learning and memory in a spatial version of the circular water maze and an auditory-cued fear-conditioning task. RESULTS: All pregnant rats increased fluid and food intake over the gestational period. Fruit juice-fed pregnant rats had increased fluid intake compared to control pregnant rats. When testing progeny, there were no effects of prenatal fruit juice on spatial learning, while it appeared to impair learning in fear conditioning relative to controls. However, we measured significant enhancements in both spatial memory and conditioned fear memory in the prenatal fruit-juice group compared to controls. Measures of vigilance, in response to the conditioned cue, were increased in prenatal fruit rats compared to controls, suggesting less generalized, and more adaptive, anxiety behaviours. DISCUSSION: Our results corroborate the human and Drosophila findings of prenatal fruit effects on behaviour, specifically that prenatal fruit juice exposure may be beneficial for early-life memory consolidation in rats.


Subject(s)
Behavior, Animal/physiology , Fruit and Vegetable Juices , Memory Consolidation/physiology , Nutritional Physiological Phenomena , Animals , Behavior, Animal/drug effects , Cognition/drug effects , Cognition/physiology , Fear/drug effects , Fear/physiology , Female , Humans , Male , Maze Learning/drug effects , Memory Consolidation/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley/physiology
SELECTION OF CITATIONS
SEARCH DETAIL