Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Hum Mol Genet ; 31(13): 2137-2154, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35075486

ABSTRACT

Retinal diseases exhibit extensive genetic heterogeneity and complex etiology with varying onset and severity. Mutations in over 200 genes can lead to photoreceptor dysfunction and/or cell death in retinal neurodegeneration. To deduce molecular pathways that initiate and/or drive cell death, we adopted a temporal multiomics approach and examined molecular and cellular events in newborn and developing photoreceptors before the onset of degeneration in a widely-used Pde6brd1/rd1 (rd1) mouse, a model of autosomal recessive retinitis pigmentosa caused by PDE6B mutations. Transcriptome profiling of neonatal and developing rods from the rd1 retina revealed early downregulation of genes associated with anabolic pathways and energy metabolism. Quantitative proteomics of rd1 retina showed early changes in calcium signaling and oxidative phosphorylation, with specific partial bypass of complex I electron transfer, which precede the onset of cell death. Concurrently, we detected alterations in central carbon metabolism, including dysregulation of components associated with glycolysis, pentose phosphate and purine biosynthesis. Ex vivo assays of oxygen consumption and transmission electron microscopy validated early and progressive mitochondrial stress and abnormalities in mitochondrial structure and function of rd1 rods. These data uncover mitochondrial overactivation and related metabolic alterations as determinants of early pathology and implicate aberrant calcium signaling as an initiator of higher mitochondrial stress. Our studies thus provide a mechanistic framework with mitochondrial damage and metabolic disruptions as early drivers of photoreceptor cell death in retinal degeneration.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Animals , Cell Death/genetics , Disease Models, Animal , Mice , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/pathology
2.
Cell Rep ; 17(9): 2460-2473, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27880916

ABSTRACT

Gene regulatory networks (GRNs) guiding differentiation of cell types and cell assemblies in the nervous system are poorly understood because of inherent complexities and interdependence of signaling pathways. Here, we report transcriptome dynamics of differentiating rod photoreceptors in the mammalian retina. Given that the transcription factor NRL determines rod cell fate, we performed expression profiling of developing NRL-positive (rods) and NRL-negative (S-cone-like) mouse photoreceptors. We identified a large-scale, sharp transition in the transcriptome landscape between postnatal days 6 and 10 concordant with rod morphogenesis. Rod-specific temporal DNA methylation corroborated gene expression patterns. De novo assembly and alternative splicing analyses revealed previously unannotated rod-enriched transcripts and the role of NRL in transcript maturation. Furthermore, we defined the relationship of NRL with other transcriptional regulators and downstream cognate effectors. Our studies provide the framework for comprehensive system-level analysis of the GRN underlying the development of a single sensory neuron, the rod photoreceptor.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Eye Proteins/metabolism , Gene Expression Regulation, Developmental , Retinal Cone Photoreceptor Cells/metabolism , Transcriptome/genetics , Alternative Splicing/genetics , Animals , Animals, Newborn , Cell Differentiation/genetics , Computer Simulation , DNA Methylation/genetics , Gene Regulatory Networks , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Annotation , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Nat Genet ; 48(2): 134-43, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26691988

ABSTRACT

Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.


Subject(s)
Genome-Wide Association Study , Macular Degeneration/genetics , Genetic Predisposition to Disease , Humans , Mutation
4.
Sci Rep ; 5: 13187, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26306921

ABSTRACT

Whole exome sequencing (WES) is a powerful technique for identifying sequence changes in the human genome. The goal of this study was to delineate the genetic defects in patients with inherited retinal diseases (IRDs) using WES. WES was performed on 90 patient DNA samples from 68 families and 226 known genes for IRDs were analyzed. Sanger sequencing was used to validate potential pathogenic variants that were also subjected to segregation analysis in families. Thirty-three causative mutations (19 novel and 14 known) in 25 genes were identified in 33 of the 68 families. The vast majority of mutations (30 out of 33) have not been reported in the Israeli and the Palestinian populations. Nine out of the 33 mutations were detected in additional families from the same ethnic population, suggesting a founder effect. In two families, identified phenotypes were different from the previously reported clinical findings associated with the causative gene. This is the largest genetic analysis of IRDs in the Israeli and Palestinian populations to date. We also demonstrate that WES is a powerful tool for rapid analysis of known disease genes in large patient cohorts.


Subject(s)
Exome/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Retinal Diseases/epidemiology , Retinal Diseases/genetics , Sequence Analysis, DNA/methods , Adult , Aged , Aged, 80 and over , Arabs/statistics & numerical data , Chromosome Mapping/methods , Female , Genetic Association Studies/methods , Genetic Markers/genetics , Humans , Israel/ethnology , Male , Middle Aged , Mutation, Missense/genetics , Polymorphism, Single Nucleotide/genetics , Prevalence , Risk Factors
5.
Invest Ophthalmol Vis Sci ; 56(1): 420-30, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25515582

ABSTRACT

PURPOSE: The Israeli population has a unique genetic make-up, with a high prevalence of consanguineous marriages and autosomal recessive diseases. In rod-dominated phenotypes, disease-causing genes and mutations that differ from those identified in other populations often are incurred. We used whole exome sequencing (WES) to identify genetic defects in Israeli families with cone-dominated retinal phenotypes. METHODS: Clinical analysis included family history, detailed ocular examination, visual function testing, and retinal imaging. Whole exome sequencing, followed by segregation analysis, was performed in 6 cone-dominated retinopathy families in which prior mutation analysis did not reveal the causative gene. Based on the WES findings, we screened 106 additional families with cone-dominated phenotypes. RESULTS: The WES analysis revealed mutations in known retinopathy genes in five of the six families: two pathogenic mutations in the GUCY2D gene in three families, and one each in CDHR1 and C8orf37. Targeted screening of additional cone-dominated families led to identification of GUCY2D mutations in four other families, which included two highly probable novel disease-causing variants. CONCLUSIONS: Our study suggested that GUCY2D is a major cause of autosomal dominant cone and cone-rod dystrophies in Israel; this is similar to other Caucasian populations and is in contrast with retinitis pigmentosa (primary rod disease), where the genetic make-up of the Israeli population is distinct from other ethnic groups. We also conclude that WES permits more comprehensive and rapid analyses that can be followed by targeted screens of larger samples to delineate the genetic structure of retinal disease in unique population cohorts.


Subject(s)
DNA/genetics , Guanylate Cyclase/genetics , Mutation , Receptors, Cell Surface/genetics , Retinal Cone Photoreceptor Cells/pathology , Retinitis Pigmentosa/genetics , DNA Mutational Analysis , Electroretinography , Exome , Female , Guanylate Cyclase/metabolism , Humans , Israel/epidemiology , Male , Pedigree , Phenotype , Prevalence , Receptors, Cell Surface/metabolism , Retinitis Pigmentosa/epidemiology , Retinitis Pigmentosa/pathology
6.
Nat Genet ; 45(11): 1375-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24036949

ABSTRACT

Macular degeneration is a common cause of blindness in the elderly. To identify rare coding variants associated with a large increase in risk of age-related macular degeneration (AMD), we sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we augmented our control set with ancestry-matched exome-sequenced controls. An analysis of coding variation in 2,268 AMD cases and 2,268 ancestry-matched controls identified 2 large-effect rare variants: previously described p.Arg1210Cys encoded in the CFH gene (case frequency (fcase) = 0.51%; control frequency (fcontrol) = 0.02%; odds ratio (OR) = 23.11) and newly identified p.Lys155Gln encoded in the C3 gene (fcase = 1.06%; fcontrol = 0.39%; OR = 2.68). The variants suggest decreased inhibition of C3 by complement factor H, resulting in increased activation of the alternative complement pathway, as a key component of disease biology.


Subject(s)
Complement C3/genetics , Complement Pathway, Alternative/immunology , Macular Degeneration/genetics , Aging , Complement C3/metabolism , Complement Factor H/metabolism , Gene Frequency , Genetic Variation , Genotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL