Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 50(18): 9963-71, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27570123

ABSTRACT

Manganese (Mn) contamination of well water is recognized as an environmental health concern. In the southeastern Piedmont region of the United States, well water Mn concentrations can be >2 orders of magnitude above health limits, but the specific sources and causes of elevated Mn in groundwater are generally unknown. Here, using field, laboratory, spectroscopic, and geospatial analyses, we propose that natural pedogenetic and hydrogeochemical processes couple to export Mn from the near-surface to fractured-bedrock aquifers within the Piedmont. Dissolved Mn concentrations are greatest just below the water table and decrease with depth. Solid-phase concentration, chemical extraction, and X-ray absorption spectroscopy data show that secondary Mn oxides accumulate near the water table within the chemically weathering saprolite, whereas less-reactive, primary Mn-bearing minerals dominate Mn speciation within the physically weathered transition zone and bedrock. Mass-balance calculations indicate soil weathering has depleted over 40% of the original solid-phase Mn from the near-surface, and hydrologic gradients provide a driving force for downward delivery of Mn. Overall, we estimate that >1 million people in the southeastern Piedmont consume well water containing Mn at concentrations exceeding recommended standards, and collectively, these results suggest that integrated soil-bedrock-system analyses are needed to predict and manage Mn in drinking-water wells.


Subject(s)
Manganese , Soil , Environmental Monitoring , Groundwater/chemistry , Water , Water Pollutants, Chemical
2.
Environ Sci Technol ; 48(18): 10804-12, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25148521

ABSTRACT

Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Models, Theoretical , Nitrates/analysis , Water Pollutants, Chemical/analysis , Animals , Bayes Theorem , Entropy , Humans , Nonlinear Dynamics , North Carolina , Regression Analysis , Reproducibility of Results , Swine , Time Factors
3.
Environ Sci Technol ; 42(13): 4683-8, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18677991

ABSTRACT

Urbanization of rural farmland is a pervasive trend around the globe, and maintaining and protecting adequate water supplies in suburban areas is a growing problem. Identification of the sources of groundwater contamination in urbanized areas is problematic, but will become important in areas of rapid population growth and development. The isotopic composition of NO3 (delta15N(NO3) and delta18O NO3), NH4 (delta15N(NH4)), groundwater (delta2H(wt) and delta18O(wt)) and chloride/bromide ratios were used to determine the source of nitrate contamination in drinking water wells in a housing development that was built on the site of a dairy farm in the North Carolina Piedmont, U.S. The delta15N(NO3) and delta18O NO3 compositions imply that elevated nitrate levels at this site in drinking well water are the result of waste contamination, and that denitrification has not significantly attenuated the groundwater nitrate concentrations. delta15N(NO3) and delta18O(NO3) compositions in groundwater could not differentiate between septic effluent and animal waste contamination. Chloride/ bromide ratios in the most contaminated drinking water wells were similar to ratios found in animal waste application fields, and were higher than Cl/Br ratios observed in septic drain fields in the area. delta18O(wt) was depleted near the site of a buried waste lagoon without an accompanying shift in delta2H(wt) suggesting water oxygen exchange with CO2. This water-CO2 exchange resulted from the reduction of buried lagoon organic matter, and oxidation of the released gases in aerobic soils. delta18O(wt) is not depleted in the contaminated drinking water wells, indicating that the buried dairy lagoon is not a source of waste contamination. The isotope and Cl/Br ratios indicate that nitrate contamination in these drinking wells are not from septic systems, but are the result of animal waste leached from pastures into groundwater during 35 years of dairy operations which did not violate any existing regulations. Statutes need to be enacted to protect the health of the homeowners that require well water to be tested prior to the sale of homes built on urbanized farmland.


Subject(s)
Environmental Monitoring/statistics & numerical data , Nitrates/analysis , Water Pollutants, Chemical/analysis , Water Supply/analysis , Bromides/analysis , Chlorides/analysis , Dairying , Flow Injection Analysis , Magnetics , Nitrogen Isotopes/analysis , North Carolina , Urban Renewal
SELECTION OF CITATIONS
SEARCH DETAIL