ABSTRACT
Neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), cerebral palsy (CP) and stroke are well-known causes of gait and balance alterations. Innovative devices (i.e., robotics) are often used to promote motor recovery. As an alternative, anti-gravity treadmills, which were developed by NASA, allow early mobilization, walking with less effort to reduce gait energy costs and fatigue. A systematic search, according to PRISMA guidelines, was conducted for all peer-reviewed articles published from January 2010 through September 2023, using the following databases: PubMed, Scopus, PEDro and IEEE Xplore. After an accurate screening, we selected only 16 articles (e.g., 5 RCTs, 2 clinical trials, 7 pilot studies, 1 prospective study and 1 exploratory study). The evidence collected in this systematic review reported promising results in the field of anti-gravity technology for neurological patients, in terms of improvement in gait and balance outcomes. However, we are not able to provide any clinical recommendation about the dose and parameters of anti-gravity treadmill training, because of the lack of robust high-quality RCT studies and large samples. Registration number CRD42023459665.
Subject(s)
Neurological Rehabilitation , Walking , Humans , Neurological Rehabilitation/methods , Neurological Rehabilitation/instrumentation , Walking/physiology , Exercise Therapy/methods , Exercise Therapy/instrumentationABSTRACT
In its chronic and non-specific form, low back pain is experienced by a large percentage of the population; its persistence impacts the quality of life and increases costs to the health care system. In recent years, the scientific literature highlights how treatment based on assessment and functional recovery is effective through IMU technology with biofeedback or exergaming as part of the tools available to assist the evaluation and treatment of these patients, who present not only with symptoms affecting the lumbar spine but often also incorrect postural attitudes. Aim: Evaluate the impact of technology, based on inertial sensors with biofeedback or exergaming, in patients with chronic non-specific low back pain. A systematic review of clinical studies obtained from PubMed, Scopus, Science Direct, and Web of Science databases from 1 January 2016 to 1 July 2024 was conducted, developing the search string based on keywords and combinations of terms with Boolean AND/OR operators; on the retrieved articles were applied inclusion and exclusion criteria. The procedure of publication selection will be represented with the PRISMA diagram, the risk of bias through the RoB scale 2, and methodological validity with the PEDro scale. Eleven articles were included, all RCTs, and most of the publications use technology with exergaming within about 1-2 months. Of the outcomes measured, improvements were reported in pain, disability, and increased function; the neuropsychological sphere related to experiencing the pathology underwent improvements. From the results obtained, the efficacy of using technology based on exergames and inertial sensors, in patients with chronic non-specific low back pain, was increased. Further clinical studies are required to achieve more uniformity in the proposed treatment to create a common guideline for health care providers.
Subject(s)
Exercise Therapy , Low Back Pain , Virtual Reality , Low Back Pain/therapy , Humans , Exercise Therapy/methods , Exercise Therapy/instrumentation , Quality of Life , Biofeedback, Psychology/methods , Video Games , Chronic Pain/therapyABSTRACT
The implementation of cognitive health apps in patients with mild cognitive impairment (MCI) is challenging because of their cognitive, age, and other clinical characteristics. In this project, we aimed to evaluate the usability and feasibility of the Rehastart app tested in MCI patients. Eighteen subjects affected by MCI due to neurodegenerative disorders (including Parkinson's disease, multiple sclerosis, and amnestic/multidomain MCI) and eighteen healthcare professionals were recruited to this study. Patients were registered on the app by clinicians and they were assigned a protocol of specific cognitive exercises. The recruitment was conducted in the period between March and June 2023. The trial testing of the app consisted of three sessions per week for three weeks, with each session lasting about 30 min. After three weeks, the participants as well as medical personnel were invited to rate the usability and feasibility of the Rehastart mobile application. The instruments employed to evaluate the usability and feasibility of the app were the System Usability Scale (SUS), The Intrinsic Motivation Inventory (IMI) and the Client Satisfaction Questionnaire (CSQ). We did not find statistically significant differences on the SUS (p = 0.07) between healthcare professionals and patients. In addition, we found promising results on subscales of the Intrinsic Motivation Inventory, suggesting high levels of interest and enjoyment when using the Rehastart app. Our study demonstrated that smartphone-based telerehabilitation could be a suitable tool for people with MCI due to neurodegenerative disorders, since the Rehastart app was easy to use and motivating for both patients and healthy people.
Subject(s)
Cognitive Dysfunction , Parkinson Disease , Telerehabilitation , Humans , Smartphone , Feasibility Studies , CognitionABSTRACT
Chronic stress and chronic pain share neuro-anatomical, endocrinological, and biological features. However, stress prepares the body for challenging situations or mitigates tissue damage, while pain is an unpleasant sensation due to nociceptive receptor stimulation. When pain is chronic, it might lead to an allostatic overload in the body and brain due to the chronic dysregulation of the physiological systems that are normally involved in adapting to environmental challenges. Managing stress and chronic pain (CP) in neurorehabilitation presents a significant challenge for healthcare professionals and researchers, as there is no definitive and effective solution for these issues. Patients suffering from neurological disorders often complain of CP, which significantly reduces their quality of life. The aim of this narrative review is to examine the correlation between stress and pain and their potential negative impact on the rehabilitation process. Moreover, we described the most relevant interventions used to manage stress and pain in the neurological population. In conclusion, this review sheds light on the connection between chronic stress and chronic pain and their impact on the neurorehabilitation pathway. Our results emphasize the need for tailored rehabilitation protocols to effectively manage pain, improve treatment adherence, and ensure comprehensive patient care.
Subject(s)
Chronic Pain , Humans , Neuroendocrinology , Quality of Life , AnxietyABSTRACT
BACKGROUND: In neurorehabilitation, the use of innovative technologies offers many opportunities to monitor and improve the health status of patients with severe acquired brain injury (SABI). Telerehabilitation allows for continuity of service through the entire rehabilitation cycle, including assessment, intervention, consultation, and education, affording early reintegration and positively enhancing the quality of life (QoL). OBJECTIVE: The main purpose of this multicenter randomized controlled trial was to test the effectiveness of advanced training provided using a nonimmersive virtual reality rehabilitation system (ie, the VRRS HomeKit device) in improving functional outcomes in patients with SABI. METHODS: In total, 40 patients with SABI and their 40 caregivers visiting 2 Italian rehabilitation centers were enrolled in the study protocol and randomized into 2 groups. Of the 40 patients, 20 (50%) underwent the experimental training using the VRRS HomeKit (teleneuro-VRRS group), whereas the other 20 (50%) were administered usual territorial rehabilitative treatments (UTRTs; control group). To investigate motor and neuropsychological functioning, patients with SABI were evaluated before (T0) and at the end of (T1) each training session by a multispecialist team through a complete clinical and psychometric battery: the Barthel Index (BI), the Tinetti Scale (TS), the Modified Ashworth Scale (MAS), the Montreal Cognitive Assessment (MoCa), the Frontal Assessment Battery (FAB), the Beck Depression Inventory II (BDI-II), the Short Form Health Survey 36 (SF-36), and the Psychological General Well-Being Index (PGWBI). In addition, the Caregiver Burden Inventory (CBI) was administered to each caregiver to investigate the emotional burden status. RESULTS: The teleneuro-VRRS group achieved a statistically significant improvement in both general and motor outcomes, as well as psychological well-being and QoL, compared to the control group. In particular, the BI (P<.001), FAB (P<.001), and BDI-II (P<.001) were the outcome scales with the best improvement. The burden of caregivers also significantly improved in the teleneuro-VRRS group (CBI; P<.004). Between-group analysis showed statistical differences in the anxiety (effect size [ES]=0.85, P<.02) and self-control (ES=0.40, P<.03) subtests of the PGWBI and in the social role functioning (ES=0.85, P<.02) subtest of the SF-36, confirmed by quite medium and large ESs. CONCLUSIONS: Our results suggest that the VRRS is a suitable alternative tool or complementary tool or both to improve motor (level of functional independence) and cognitive (frontal/executive abilities) outcomes, reducing behavioral alterations (anxiety and depression symptoms) in patients with SABI, with a beneficial impact also on the caregivers' burden distress management, mitigating distress and promoting positive aspects of caring. TRIAL REGISTRATION: ClinicalTrials.gov NCT03709875; https://classic.clinicaltrials.gov/ct2/show/NCT03709875.
Subject(s)
Brain Injuries , Neurological Rehabilitation , Telerehabilitation , Humans , Brain Injuries/rehabilitation , Health Status , Patients , Quality of Life , Telerehabilitation/methodsABSTRACT
Background and Objectives: Normal human sexual functioning is a complex integration of an intact neuroanatomic substrate, vascular supply, a balanced hormonal profile, and a predominance of excitatory over inhibitory psychological mechanisms. However, sexual functioning in Parkinson's disease (PD) is often overlooked in clinical practice, especially in female patients. Materials and Methods: In this cross-sectional study, we have investigated the frequency of sexual dysfunction and the possible correlation with psycho-endocrinological factors in a sample of women with idiopathic PD. Patients were assessed using a semi-structured sexual interview, in addition to psychometric tools, including the Hamilton Rating Scale for Anxiety and for Depression and the Coping Orientation to the Problems Experiences-New Italian Version. Specific blood tests, including testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen E2, prolactin (PRL), and vitamin D3 were also evaluated. Results: Our results reported a statistical difference in sexual intercourse frequency before and after the onset of PD (p < 0.001). The percentage of women who complained about reduced sexual desire increased after diagnosis (52.7%) compared to the period before the onset of the illness (36.8%). The endocrinological profile in females with PD revealed statistically significant differences regarding testosterone (p < 0.0006), estradiol (p < 0.00), vitamin D3 (p < 0.006), and calcium (0.002). Depression (44% characterized by perceived feelings of anger and frustration during sexual intercourse) and anxiety symptoms (29.5% reported feelings of fear and anxiety for not satisfying the partner) with abnormal coping strategies (48.14% experienced feelings of anger and intolerance) were also found to be statistically significant. This study showed a high frequency of sexual dysfunction in female patients with PD, which correlated with sexual hormone abnormalities, mood/anxiety, and coping strategies alterations. This supports the idea that there is a need to better investigate the sexual function of female patients with PD to provide them with an adequate therapeutic approach and potentially improve quality of life.
Subject(s)
Parkinson Disease , Sexual Dysfunction, Physiological , Humans , Female , Cross-Sectional Studies , Parkinson Disease/complications , Quality of Life , Sexual Dysfunction, Physiological/etiology , Testosterone , CholecalciferolABSTRACT
In recent years, there has been a notable increase in the clinical adoption of instrumental upper limb kinematic assessment. This trend aligns with the rising prevalence of cerebrovascular impairments, one of the most prevalent neurological disorders. Indeed, there is a growing need for more objective outcomes to facilitate tailored rehabilitation interventions following stroke. Emerging technologies, like head-mounted virtual reality (HMD-VR) platforms, have responded to this demand by integrating diverse tracking methodologies. Specifically, HMD-VR technology enables the comprehensive tracking of body posture, encompassing hand position and gesture, facilitated either through specific tracker placements or via integrated cameras coupled with sophisticated computer graphics algorithms embedded within the helmet. This review aims to present the state-of-the-art applications of HMD-VR platforms for kinematic analysis of the upper limb in post-stroke patients, comparing them with conventional tracking systems. Additionally, we address the potential benefits and challenges associated with these platforms. These systems might represent a promising avenue for safe, cost-effective, and portable objective motor assessment within the field of neurorehabilitation, although other systems, including robots, should be taken into consideration.
ABSTRACT
Spinal cord injury (SCI) consists of damage to any segment of the spinal cord extending to potential harm to nerves in the cauda equina. Rehabilitative efforts for SCI can involve conventional physiotherapy, innovative technologies, as well as cognitive treatment and psychological support. The aim of this study is to evaluate the feasibility of a dedicated, multidisciplinary, and integrated intervention path for SCI, encompassing both conventional and technological interventions, while observing their impact on cognitive, motor, and behavioral outcomes and the overall quality of life for individuals with SCI. Forty-two patients with SCI were included in the analysis utilizing electronic recovery system data. The treatment regimen included multidisciplinary rehabilitation approaches, such as traditional physiotherapy sessions, speech therapy, psychological support, robotic devices, advanced cognitive rehabilitation, and other interventions. Pre-post comparisons showed a significant improvement in lower limb function (Fugl Meyer Assessment-FMA < 0.001), global cognitive functioning (Montreal Cognitive Assessment-MoCA p < 0.001), and perceived quality of life at both a physical and mental level (Short Form-12-SF-12 p < 0.001). Furthermore, we found a significant reduction in depressive state (Beck Depression Inventory-BDI p < 0.001). In addition, we assessed patient satisfaction using the Short Form of the Patient Satisfaction Questionnaire (PSQ), offering insights into the subjective evaluation of the intervention. In conclusion, this retrospective study provides positive results in terms of improvements in motor function, cognitive functions, and quality of life, highlighting the importance of exploring multidisciplinary approaches.
ABSTRACT
Background and Objectives: Neurological disorders like stroke, spinal cord injury (SCI), and Parkinson's disease (PD) significantly affect global health, requiring accurate diagnosis and long-term neurorehabilitation. Artificial intelligence (AI), such as machine learning (ML), may enhance early diagnosis, personalize treatment, and optimize rehabilitation through predictive analytics, robotic systems, and brain-computer interfaces, improving outcomes for patients. This systematic review examines how AI and ML systems influence diagnosis and treatment in neurorehabilitation among neurological disorders. Materials and Methods: Studies were identified from an online search of PubMed, Web of Science, and Scopus databases with a search time range from 2014 to 2024. This review has been registered on Open OSF (n) EH9PT. Results: Recent advancements in AI and ML are revolutionizing motor rehabilitation and diagnosis for conditions like stroke, SCI, and PD, offering new opportunities for personalized care and improved outcomes. These technologies enhance clinical assessments, therapy personalization, and remote monitoring, providing more precise interventions and better long-term management. Conclusions: AI is revolutionizing neurorehabilitation, offering personalized, data-driven treatments that enhance recovery in neurological disorders. Future efforts should focus on large-scale validation, ethical considerations, and expanding access to advanced, home-based care.
ABSTRACT
BACKGROUND: Non-invasive brain stimulation induces changes in spontaneous neural activity in the cerebral cortex through facilitatory or inhibitory mechanisms, relying on neuromodulation of neural excitability to impact brain plasticity. This systematic review assesses the state-of-the art and existing evidence regarding the effectiveness of NIBS in cognitive recovery among patients with chronic stroke. MATERIALS AND METHODS: We conducted a systematic search, following PRISMA guidelines, for articles published from January 2010 through September 2023. We searched the following databases: PubMed, Embase, Cochrane Database of Systematic Reviews, PEDro, Rehab Data, and Web of Science. RESULTS: Our electronic searches identified 109 papers. We assessed and included 61 studies based on their pertinence and relevance to the topic. After reading the full text of the selected publications and applying predefined inclusion criteria, we excluded 32 articles, leaving 28 articles for our qualitative analysis. We categorized our results into two sections as follows: (1) Cognitive and emotional domains (11 studies), (2) language and speech functions (16 studies). CONCLUSION: Our findings highlight the potential of NIBS, such as tDCS and rTMS, in the cognitive, linguistic, and emotional recovery of post-stroke patients. Although it seems that NIBS may work as a complementary tool to enhance cognitive and communication abilities in patients with stroke -also in the chronic phase- evidence on behavioural outcomes is still poor. Future studies should focus on this important issue to confirm the effectiveness of neuromodulation in chronic neurological diseases. PROSPERO Registration: CRD42023458370.
Subject(s)
Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Stroke/therapy , Stroke/physiopathology , Stroke Rehabilitation/methods , Transcranial Magnetic Stimulation/methods , Recovery of Function/physiology , Cognition/physiology , Chronic Disease , Treatment Outcome , Neuronal Plasticity/physiologyABSTRACT
Background: Multiple sclerosis (MS) is characterized as a neurodegenerative condition possibly triggered by autoimmune mechanisms, impacting the entire central nervous system. In this context, neurorehabilitation plays a crucial role in every phase of the disease, aiming to restore and preserve motor functions in MS patients. In particular, robotic gait training (RGT) allows intensive, repetitive, and task-oriented training, which is pivotal in boosting neuroplastic processes. Thus, the primary aim of our study is to evaluate the effectiveness of innovative robotic gait training, using the G-EO system, on gait, functional abilities, and quality of life (QoL) in patients affected by MS. Secondly, we evaluated the effect of the robotic rehabilitation on lower-limb motor functioning, balance, sensation, and joint functioning. Methods: The study involved twenty MS patients, divided into two groups with comparable medical characteristics and rehabilitation training duration. The experimental group (EG) underwent robotic gait training with the G-EO system (n. 10), while the control group (CG) received traditional rehabilitation training (n. 10). Results: Both groups exhibited improvements in disability level (Functional Independence Measure), 10 m walking distance (10MWT), gait, and balance performance (Functional Ambulation Classification, Tinetti Scale). However, the EG demonstrated a more significant improvement. The G-EO system notably reduced spasticity in the lower limbs (Modified Ashworth Scale) exclusively in the EG. Discussion: This study suggests that the G-EO system could be a valuable tool for enhancing gait functions, including lower-limb movements, functional abilities, and QoL in individuals with MS.
ABSTRACT
INTRODUCTION: Translational medicine has been facing a persistent crisis for decades, and the field of neurorehabilitation is no exception. The challenges and delays that prevent patients, caregivers, and clinicians from promptly benefiting from advancements in bioengineering and new technological discoveries are well-documented. AREAS-COVERED: This perspective presents some ideas to underline the consolidated problems and highlight new obstacles to overcome in the context of translational neurorehabilitation, also considering the increasingly stringent laws for medical devices that are emerging throughout the world. EXPERT OPINION: The objective of the entire medical-scientific community must be to ensure that patients and their loved ones receive the best care available with the most advanced systems. Bioengineers, healthcare policy makers, certifiers and clinicians must always take translational aspects into consideration and find solutions to mitigate possible problems and delays. The goal of the entire medical and scientific community should be to ensure that patients and their families receive the highest quality care through the most advanced systems. To achieve this, bioengineers, healthcare policymakers, certifiers, and clinicians must consistently address translational challenges and work collaboratively to find solutions that minimize potential problems and delays.
ABSTRACT
INTRODUCTION: Spinal cord injuries (SCI) often result in motor impairment and lifelong disability. METHODS: This systematic review, conducted in agreement with PRISMA guidelines, aimed to evaluate the effects of cortico-spinal paired associative stimulation (PAS) on motor outcomes in individuals with SCI. PubMed, Scopus/EMBASE, Pedro, and Cochrane databases were consulted from inception to 2023/01/12. RESULTS: In 1021 articles, 10 studies involving 84 patients meet the inclusion criteria, 7 case series/study, and 3 clinical trials. Despite light differences, the included studies performed a cortico-peripheral PAS using a single transcranial magnetic stimulation and high frequency electrical peripheral nerve stimulation for a consistent number of sessions (>20). All included studies reported improvement in motor outcomes recorded via clinical and/or neurophysiological assessment. CONCLUSION: Available evidence showed an increase in motor outcomes after PAS stimulation. Indeed, both clinical and neurophysiological outcomes suggest the effectiveness of a high number of PAS sessions in chronic individuals with SCI. Due to a limited number of studies and an unsatisfactory study design, well-designed RCTs are needed to confirm the potentiality of these approaches and clarify the adequate dose-response of PAS in the SCI population. REGISTRATION ID: The protocol was registered on the PROSPERO database (CRD42023485703).
ABSTRACT
Introduction: Ataxia is a neurological symptom that causes decreased balance, loss of coordination, and gait alterations. Innovative rehabilitation devices like virtual reality (VR) systems can provide task-oriented, repetitive and intensive training with multisensorial feedback, thus promoting neuroplastic processes. Among these VR technologies, the Computer Assisted Rehabilitation ENvironment (CAREN) associates a split belt treadmill on a 6-degrees of freedom platform with a 180° VR screen and a Vicon motion capture system to monitor patients' movements during training sessions. Methods: Eight patients affected by cerebellar ataxia were enrolled and received 20 sessions of CAREN training in addition to standard rehabilitation treatment. Each patient was evaluated at the beginning and at the end of the study with 3D gait analysis and clinical scales to assess balance, gait function and risk of falls. Results: We found improvements in kinematic, kinetic, and electromyographic parameters (as per pre-post- CAREN training), as well as in clinical outcomes, such as balance and risk of falls in ataxic patients. In addition, we found that trunk rotation improved, after CAREN intervention, approximating to the normative values. Discussion: Our results suggested that CAREN might be useful to improve specific biomechanical parameters of gait in ataxic patients.
ABSTRACT
Osteopathic manipulative treatment (OMT) is a hands-on therapy aiming to achieve the global homeostasis of the patient. OMT focuses on treating the somatic dysfunctions characterized by tissue modifications, body asymmetry, and range-of-motion restrictions. The benefits related to OMT are thought to be associated with the interconnectedness of the body's systems and the inherent capacity for self-healing. However, whether OMT can influence brain activity, and, consequently, neurophysiological responses is an open research question. Our research investigates the literature to identify the effects of OMT on brain activity. The main purpose of the research question is: can OMT influence brain activity and consequently neurophysiological responses? A scoping review was conducted, searching the following databases: PubMed, Google Scholar, and OSTEOMED.DR (Osteopathic Medical Digital Repository), Scopus, Web of Science (WoS), and Science Direct. The initial search returned 114 articles, and after removing duplicates, 69 were considered eligible to be included in the final sample. In the end, eight studies (six randomized controlled trials, one pilot study, and one cross-over study) were finally included and analyzed in this review. In conclusion, OMT seems to have a role in influencing functional changes in brain activity in healthy individuals and even more in patients with chronic musculoskeletal pain. However, further RCT studies are needed to confirm these findings. Registration protocol: CRD42024525390.
ABSTRACT
In several medical fields, generative AI tools such as ChatGPT have achieved optimal performance in identifying correct diagnoses only by evaluating narrative clinical descriptions of cases. The most active fields of application include oncology and COVID-19-related symptoms, with preliminary relevant results also in psychiatric and neurological domains. This scoping review aims to introduce the arrival of ChatGPT applications in neurorehabilitation practice, where such AI-driven solutions have the potential to revolutionize patient care and assistance. First, a comprehensive overview of ChatGPT, including its design, and potential applications in medicine is provided. Second, the remarkable natural language processing skills and limitations of these models are examined with a focus on their use in neurorehabilitation. In this context, we present two case scenarios to evaluate ChatGPT ability to resolve higher-order clinical reasoning. Overall, we provide support to the first evidence that generative AI can meaningfully integrate as a facilitator into neurorehabilitation practice, aiding physicians in defining increasingly efficacious diagnostic and personalized prognostic plans.
ABSTRACT
In disorders of consciousness, verticalization is considered an effective type of treatment to improve motor and cognitive recovery. Our purpose is to investigate neurophysiological effects of robotic verticalization training (RVT) in patients with minimally conscious state (MCS). Thirty subjects affected by MCS due to traumatic or vascular brain injury, attending the intensive Neurorehabilitation Unit of the IRCCS Neurolesi (Messina, Italy), were included in this retrospective study. They were equally divided into two groups: the control group (CG) received traditional verticalization with a static bed and the experimental group (EG) received advanced robotic verticalization using the Erigo device. Each patient was evaluated using both clinical scales, including Levels of Cognitive Functioning (LCF) and Functional Independence Measure (FIM), and quantitative EEG pre (T0) and post each treatment (T1). The treatment lasted for eight consecutive weeks, and sessions were held three times a week, in addition to standard neurorehabilitation. In addition to a notable improvement in clinical parameters, such as functional (FIM) (p < 0.01) and cognitive (LCF) (p < 0.01) outcomes, our findings showed a significant modification in alpha and beta bands post-intervention, underscoring the promising effect of the Erigo device to influence neural plasticity and indicating a noteworthy difference between pre-post intervention. This was not observed in the CG. The observed changes in alpha and beta bands underscore the potential of the Erigo device to induce neural plasticity. The device's custom features and programming, tailored to individual patient needs, may contribute to its unique impact on brain responses.
ABSTRACT
INTRODUCTION: Apraxia is a neurological disorder that is common after a stroke and impairs the planning and execution of movements. In the rehabilitation field, virtual reality (VR) presents new opportunities and offers advantages to both rehabilitation teams and individuals with neurological conditions. Indeed, VR can stimulate and improve cognitive reserve and abilities, including executive function, and enhance the patient's emotional status. AIM: The objective of this research is to determine the effectiveness of VR in improving praxis skills and behavioural functioning in individuals with severe stroke. METHODS: A total of 20 stroke patients were enrolled from February 2022 to March 2023 and divided by the order of their recruitment into two groups: the experimental group (EG: n = 10) received training to improve their praxis skills using VR whereas the control one (CG: n = 10) received the same amount of standard training. All patients underwent an evaluation using a psychometric battery that consisted of the Hamilton Rating Scale for Depression (HRS-D), Mini-Mental State Examination (MMSE), Frontal Assessment Battery (FAB), Spinnler and Tognoni test, and De Renzi and Faglioni test. Valuations were performed before rehabilitation (T0) and after its completion (T1). RESULTS: Both groups demonstrated significant improvements post-intervention. The EG showed a greater enhancement in their MMSE scores (p = 0.002), and reductions in both ideomotor and constructive apraxia (p = 0.002 for both), compared to the CG. The VR-based training also resulted in significant improvements in their depression symptoms (HRSD scores improved, p = 0.012 in EG vs. p = 0.021 in CG). CONCLUSIONS: This pilot study suggests that VR could help reduce cognitive, constructive apraxia and ideomotor apraxia symptoms caused by stroke injury.
ABSTRACT
BACKGROUND AND OBJECTIVES: Transcranial direct current stimulation (tDCS) is a non-invasive therapeutic method that modulates cortical excitability and shows promising results for treating disorders of consciousness (DoCs). Robotic verticalization training (RVT) has been shown to enhance motor and cognitive recovery. This study evaluates the effects of an innovative approach combining RVT with tDCS in individuals with DoCs. METHODS: Twenty-four subjects with DoCs, particularly those with chronic minimally conscious state (MCS) due to vascular or traumatic brain injury, participated in a quasi-randomized study at the Neurorehabilitation Unit, IRCCS Neurolesi (Messina, Italy). Participants were divided into either a control group (CG) receiving RVT alone or an experimental group (EG) receiving combined tDCS and RVT. Both groups underwent treatments five times weekly for four weeks, with tDCS/sham sessions over the dorsolateral prefrontal cortex (DLPFC) lasting 20 min before Erigo training sessions, which lasted 45 min. RESULTS: The findings indicate that combining tDCS with Erigo® Pro RTT could lead to greater improvements in cognitive functioning and P300 latency compared to the CG. CONCLUSIONS: These results suggest that the integrated approach of tDCS with RVT could offer significant benefits for patients with MCS, highlighting its potential to enhance cognitive recovery, such as reducing P300 latency.