Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Publication year range
1.
J Immunol ; 203(8): 2194-2209, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31541022

ABSTRACT

Tuberculosis (TB) remains a worldwide public health threat. Development of a more effective vaccination strategy to prevent pulmonary TB, the most common and contagious form of the disease, is a research priority for international TB control. A key to reaching this goal is improved understanding of the mechanisms of local immunity to Mycobacterium tuberculosis, the causative organism of TB. In this study, we evaluated global M. tuberculosis-induced gene expression in airway immune cells obtained by bronchoalveolar lavage (BAL) of individuals with latent TB infection (LTBI) and M. tuberculosis-naive controls. In prior studies, we demonstrated that BAL cells from LTBI individuals display substantial enrichment for M. tuberculosis-responsive CD4+ T cells compared with matched peripheral blood samples. We therefore specifically assessed the impact of the depletion of CD4+ and CD8+ T cells on M. tuberculosis-induced BAL cell gene expression in LTBI. Our studies identified 12 canonical pathways and a 47-gene signature that was both sensitive and specific for the contribution of CD4+ T cells to local recall responses to M. tuberculosis In contrast, depletion of CD8+ cells did not identify any genes that fit our strict criteria for inclusion in this signature. Although BAL CD4+ T cells in LTBI displayed polyfunctionality, the observed gene signature predominantly reflected the impact of IFN-γ production on a wide range of host immune responses. These findings provide a standard for comparison of the efficacy of standard bacillus Calmette-Guérin vaccination as well as novel TB vaccines now in development at impacting the initial response to re-exposure to M. tuberculosis in the human lung.


Subject(s)
Bronchoalveolar Lavage , CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/biosynthesis , Latent Tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Adolescent , Adult , Female , Humans , Interferon-gamma/immunology , Latent Tuberculosis/immunology , Male , Middle Aged , Tuberculosis Vaccines/immunology , Young Adult
2.
Article in English | MEDLINE | ID: mdl-32393499

ABSTRACT

Mycobacterium abscessus is a highly drug-resistant nontuberculous mycobacterium (NTM). Efforts to discover new treatments for M. abscessus infections are accelerating, with a focus on cell wall synthesis proteins (M. abscessus l,d-transpeptidases 1 to 5 [LdtMab1 to LdtMab5] and d,d-carboxypeptidase) that are targeted by ß-lactam antibiotics. A challenge to this approach is the presence of chromosomally encoded ß-lactamase (BlaMab). Using a mechanism-based approach, we found that a novel ceftaroline-imipenem combination effectively lowered the MICs of M. abscessus isolates (MIC50 ≤ 0.25 µg/ml; MIC90 ≤ 0.5 µg/ml). Combining ceftaroline and imipenem with a ß-lactamase inhibitor, i.e., relebactam or avibactam, demonstrated only a modest effect on susceptibility compared to each of the ß-lactams alone. In steady-state kinetic assays, BlaMab exhibited a lower Ki app (0.30 ± 0.03 µM for avibactam and 136 ± 14 µM for relebactam) and a higher acylation rate for avibactam (k2/K = 3.4 × 105 ± 0.4 × 105 M-1 s-1 for avibactam and 6 × 102 ± 0.6 × 102 M-1 s-1 for relebactam). The kcat/Km was nearly 10-fold lower for ceftaroline fosamil (0.007 ± 0.001 µM-1 s-1) than for imipenem (0.056 ± 0.006 µM-1 s-1). Timed mass spectrometry captured complexes of avibactam and BlaMab, LdtMab1, LdtMab2, LdtMab4, and d,d-carboxypeptidase, whereas relebactam bound only BlaMab, LdtMab1, and LdtMab2 Interestingly, LdtMab1, LdtMab2, LdtMab4, LdtMab5, and d,d-carboxypeptidase bound only to imipenem when incubated with imipenem and ceftaroline fosamil. We next determined the binding constants of imipenem and ceftaroline fosamil for LdtMab1, LdtMab2, LdtMab4, and LdtMab5 and showed that imipenem bound >100-fold more avidly than ceftaroline fosamil to LdtMab1 and LdtMab2 (e.g., Ki app or Km of LdtMab1 = 0.01 ± 0.01 µM for imipenem versus 0.73 ± 0.08 µM for ceftaroline fosamil). Molecular modeling indicates that LdtMab2 readily accommodates imipenem, but the active site must widen to ≥8 Å for ceftaroline to enter. Our analysis demonstrates that ceftaroline and imipenem binding to multiple targets (l,d-transpeptidases and d,d-carboxypeptidase) and provides a mechanistic rationale for the effectiveness of this dual ß-lactam combination in M. abscessus infections.


Subject(s)
Mycobacterium abscessus , Peptidyl Transferases , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Carboxypeptidases , Cephalosporins , Imipenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamase Inhibitors , Ceftaroline
3.
J Assist Reprod Genet ; 37(12): 2999-3006, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33128115

ABSTRACT

PURPOSE: To compare growth factor and cytokine profiles in the endometrial secretions of patients with and without endometriosis to determine whether a particular protein profile is predictive of the disease. METHODS: Patients undergoing laparoscopic gynecologic surgery for benign indications were recruited for this prospective cohort study. Prior to surgery, endometrial fluid was aspirated and multiplex immunoassay was used to quantify 7 cytokines and growth factors. During surgery, each patient was staged according to the ASRM staging system for endometriosis. Cytokines and growth factors were evaluated using the Mann-Whitney and Kruskal-Wallis tests. Combinations of cytokines were evaluated using logistic regression analysis, and ROC curves were generated to evaluate the predictive capacity of the assay. RESULTS: Endometrial secretions were analyzed from 60 patients. Nineteen had stage 3-4 endometriosis, 19 had stage 1-2 disease, and 22 had no endometriosis. There were no significant differences between controls and stage 1-2 endometriosis; however, levels of IL-1α and IL-6 were significantly increased in women with moderate-to-severe disease. A combination of IL-1α, IL-1ß, and IL-6 in endometrial secretions predicts stage 3-4 endometriosis with an AUC of 0.78. A threshold value of 118 pg/mL yields a sensitivity of 75% and specificity of 70%. CONCLUSION: Aspiration of endometrial fluid is a safe and effective approach for evaluating the endometrial profile of women with endometriosis. Women with moderate-to-severe endometriosis demonstrate a distinct cytokine profile compared to controls. A combination of IL-1α, IL-1ß, and IL-6 in the endometrial secretions is predictive of stage 3-4 endometriosis, but is not predictive of minimal-to-mild disease.


Subject(s)
Body Fluids/metabolism , Cytokines/metabolism , Endometriosis/diagnosis , Endometrium/pathology , Adolescent , Adult , Body Fluids/chemistry , Case-Control Studies , Cytokines/analysis , Endometriosis/metabolism , Endometrium/metabolism , Female , Humans , Middle Aged , Prospective Studies , Young Adult
4.
Am J Respir Cell Mol Biol ; 55(4): 576-585, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27243106

ABSTRACT

Hyaluronan (HA) has been used in treatment of cystic fibrosis (CF) via a nebulizer and has demonstrated success in clinical outcomes. HA is an important glycosaminoglycan that is cross-linked by heavy chains (HCs) from inter-α-inhibitor during inflammation. HC cross-linked HA (HC-HA) becomes significantly more adhesive for leukocytes than non-cross-linked HA, which can enhance inflammation. Our studies tested the hypothesis that HC-HA is present in CF airways and that altered ratios of HC-HA to its degradation into relatively lower molecular weight HA contribute to the pathophysiology of chronic inflammation in CF. We evaluated the distribution, levels, and size of HC-HA within CF, healthy, and diseased control lung, bronchus, and sputum tissues by histological and biochemical approaches. HC-HA was significantly elevated in CF, with deposits around the pulmonary vasculature, airway submucosa, and in the stroma of the submucosal glands. The increased infiltration of leukocyte populations correlated with the distribution of HC-HA matrices in the airways. Elevated lung tissue HC-HA correlated with decreased HA levels in CF mucus and sputum compared with controls, suggesting that aberrant degradation and cross-linking of HA in lung tissue is a unique feature of CF. The accumulation and degradation of proinflammatory HC-HA in CF lung tissue suggests that aberrant HA catabolism and cross-linking may contribute to chronic inflammation in airway tissues and affect mucus viscosity in CF airways.

5.
Am J Respir Cell Mol Biol ; 55(6): 899-908, 2016 12.
Article in English | MEDLINE | ID: mdl-27509488

ABSTRACT

Immune cells of the distal airways serve as "first responders" of host immunity to the airborne pathogen Mycobacterium tuberculosis (Mtb). Mtb infection of cynomolgus macaques recapitulates the range of human outcomes from clinically silent latent tuberculosis infection (LTBI) to active tuberculosis of various degrees of severity. To further advance the application of this model to human studies, we compared profiles of bronchoalveolar lavage (BAL) cells of humans and cynomolgus macaques before and after Mtb infection. A simple gating strategy effectively defined BAL T-cell and phagocyte populations in both species. BAL from Mtb-naive humans and macaques showed similar differential cell counts. BAL T cells of macaques were composed of fewer CD4+cells but more CD8+ and CD4+CD8+ double-positive cells than were BAL T cells of humans. The most common mononuclear phagocyte population in BAL of both species displayed coexpression of HLA-DR, CD206, CD11b, and CD11c; however, multiple phagocyte subsets displaying only some of these markers were observed as well. Macaques with LTBI displayed a marked BAL lymphocytosis that was not observed in humans with LTBI. In macaques, the prevalence of specific mononuclear phagocyte subsets in baseline BAL correlated with ultimate outcomes of Mtb infection (i.e., LTBI versus active disease). Overall, these findings demonstrate the comparability of studies of pulmonary immunity to Mtb in humans and macaques. They also indicate a previously undescribed complexity of airway mononuclear phagocyte populations that suggests further lines of investigation relevant to understanding the mechanisms of both protection from and susceptibility to the development of active tuberculosis within the lung.


Subject(s)
Leukocytes/pathology , Lung/immunology , Lung/microbiology , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Adolescent , Adult , Animals , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/cytology , Humans , Latent Tuberculosis/immunology , Leukocyte Count , Lymphocyte Subsets/immunology , Macaca fascicularis , Middle Aged , Phagocytes/metabolism , Phenotype , Young Adult
6.
Infect Immun ; 84(9): 2410-21, 2016 09.
Article in English | MEDLINE | ID: mdl-27271746

ABSTRACT

Cystic fibrosis (CF) is characterized by an excessive neutrophilic inflammatory response within the airway as a result of defective cystic fibrosis transmembrane receptor (CFTR) expression and function. Interleukin-17A induces airway neutrophilia and mucin production associated with Pseudomonas aeruginosa colonization, which is associated with the pathophysiology of cystic fibrosis. The objectives of this study were to use the preclinical murine model of cystic fibrosis lung infection and inflammation to investigate the role of IL-17 in CF lung pathophysiology and explore therapeutic intervention with a focus on IL-17. Cftr-deficient mice (CF mice) and wild-type mice (WT mice) infected with P. aeruginosa had robust IL-17 production early in the infection associated with a persistent elevated inflammatory response. Intratracheal administration of IL-17 provoked a neutrophilic response in the airways of WT and CF animals which was similar to that observed with P. aeruginosa infection. The neutralization of IL-17 prior to infection significantly improved the outcomes in the CF mice, suggesting that IL-17 may be a therapeutic target. We demonstrate in this report that the pathophysiological contribution of IL-17 may be due to the induction of chemokines from the epithelium which is augmented by a deficiency of Cftr and ongoing inflammation. These studies demonstrate the in vivo contribution of IL-17 in cystic fibrosis lung disease and the therapeutic validity of attenuating IL-17 activity in cystic fibrosis.


Subject(s)
Cystic Fibrosis/metabolism , Interleukin-17/metabolism , Lung Diseases/metabolism , Lung/metabolism , Pneumonia/metabolism , Respiratory Tract Infections/metabolism , Animals , Cell Line , Chemokines/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelium/drug effects , Epithelium/metabolism , Lung/drug effects , Lung/microbiology , Lung Diseases/drug therapy , Mice , Mice, Inbred C57BL , Pneumonia/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/drug effects , Respiratory Tract Infections/drug therapy
7.
Clin Immunol ; 170: 53-60, 2016 09.
Article in English | MEDLINE | ID: mdl-27155366

ABSTRACT

Cystic fibrosis (CF) is a chronic pulmonary disease that is associated with persistent microbial infection and chronic neutrophil infiltration, and also with elevated production of the pro-inflammatory cytokine IL-17A (IL-17). In the current study, we examined IL-17 and the inducible IL-17RC receptor subunit in neutrophils from Pseudomonas aeruginosa infected F508del CF patients at the time of pulmonary exacerbation, and again following intravenous antibiotic treatment. Neutrophils expressed Il17a and Il17rc transcripts and protein at the time of pulmonary exacerbation, which were absent following antibiotic treatment. Further, CF sputum induced IL-23 - dependent Il17rc expression in neutrophils from healthy individuals. Similarly, IL-17 producing neutrophils were detected in F508del and Cftr(-/-) mice infected intranasally with P. aeruginosa. In the sputum of CF subjects, the percentage IL-17 producing neutrophils correlated with elastase and MMP9 activity; therefore, this population of neutrophils may be an important contributor to the severity of pulmonary disease in CF patients.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/immunology , Cystic Fibrosis/immunology , Interleukin-17/immunology , Interleukin-23/immunology , Neutrophils/immunology , Receptors, Interleukin-17/immunology , Adult , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Female , Flow Cytometry , Host-Pathogen Interactions/immunology , Humans , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-23/metabolism , Leukocyte Elastase/immunology , Leukocyte Elastase/metabolism , Male , Matrix Metalloproteinase 9/immunology , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Middle Aged , Neutrophils/metabolism , Neutrophils/microbiology , Pseudomonas Infections/genetics , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/physiology , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sputum/immunology , Sputum/metabolism , Young Adult
10.
Gastroenterology ; 146(5): 1266-77.e1-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24486052

ABSTRACT

BACKGROUND & AIMS: Patients with eosinophilic esophagitis (EoE) often become dysphagic from the combination of organ fibrosis and motor abnormalities. We investigated mechanisms of dysphagia, assessing the response of human esophageal fibroblasts (HEFs), human esophageal muscle cells (HEMCs), and esophageal muscle strips to eosinophil-derived products. METHODS: Biopsy specimens were collected via endoscopy from the upper, middle, and lower thirds of the esophagus of 18 patients with EoE and 21 individuals undergoing endoscopy for other reasons (controls). Primary cultures of esophageal fibroblasts and muscle cells were derived from 12 freshly resected human esophagectomy specimens. Eosinophil distribution was investigated by histologic analyses of full-thickness esophageal tissue. Active secretion of EoE-related mediators was assessed from medium underlying mucosal biopsy cultures. We quantified production of fibronectin and collagen I by HEF and HEMC in response to eosinophil products. We also measured the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 by, and adhesion of human eosinophils to, HEFs and HEMCs. Eosinophil products were tested in an esophageal muscle contraction assay. RESULTS: Activated eosinophils were present in all esophageal layers. Significantly higher concentrations of eosinophil-related mediators were secreted spontaneously in mucosal biopsy specimens from patients with EoE than controls. Exposure of HEFs and HEMCs to increasing concentrations of eosinophil products or co-culture with eosinophils caused HEFs and HEMCs to increase secretion of fibronectin and collagen I; this was inhibited by blocking transforming growth factor ß1 and p38 mitogen-activated protein kinase signaling. Eosinophil binding to HEFs and HEMCs increased after incubation of mesenchymal cells with eosinophil-derived products, and decreased after blockade of transforming growth factor ß1 and p38 mitogen-activated protein kinase blockade. Eosinophil products reduced electrical field-induced contraction of esophageal muscle strips, but not acetylcholine-induced contraction. CONCLUSIONS: In an analysis of tissues samples from patients with EoE, we linked the presence and activation state of eosinophils in EoE with altered fibrogenesis and motility of esophageal fibroblasts and muscle cells. This process might contribute to the development of dysphagia.


Subject(s)
Cytokines/metabolism , Deglutition Disorders/etiology , Deglutition , Eosinophilic Esophagitis/complications , Eosinophils/immunology , Muscle Contraction , Th2 Cells/immunology , Transforming Growth Factor beta1/metabolism , Aged , Biopsy , Case-Control Studies , Cell Adhesion , Cell Communication , Cells, Cultured , Coculture Techniques , Collagen Type I/metabolism , Deglutition Disorders/immunology , Deglutition Disorders/metabolism , Deglutition Disorders/pathology , Deglutition Disorders/physiopathology , Eosinophilic Esophagitis/immunology , Eosinophilic Esophagitis/metabolism , Eosinophilic Esophagitis/pathology , Eosinophilic Esophagitis/physiopathology , Eosinophils/metabolism , Esophagoscopy , Female , Fibroblasts/immunology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibronectins/metabolism , Fibrosis , Humans , Intercellular Adhesion Molecule-1/metabolism , Male , Middle Aged , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/pathology , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Th2 Cells/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
11.
J Infect Dis ; 208(1): 130-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23087427

ABSTRACT

BACKGROUND: In cystic fibrosis (CF) patients, chronic lung infection and inflammation due to Pseudomonas aeruginosa contribute to the decline of lung function. The increased prevalence of multidrug resistance among bacteria and the adverse effects of antiinflammatory agents highlight the need for alternative therapeutic approaches that should be tested in a relevant animal model. METHODS: Gut-corrected CF and non-CF mice were chronically infected with a multidrug-resistant P. aeruginosa strain and treated with the long pentraxin PTX3. Body weight, bacterial count, inflammation, and lung pathology were evaluated after 12 days. PTX3 localization in CF sputum specimens was analyzed by immunofluorescence. RESULTS: Chronic P. aeruginosa infection developed similarly in CF and non-CF mice but differed in terms of the inflammatory response. Leukocyte recruitment in the airways, cytokine levels, and chemokine levels were significantly higher in CF mice, compared with non-CF mice. PTX3 treatment, which facilitates phagocytosis of pathogens, reduced P. aeruginosa colonization and restored airway inflammation in CF mice to levels observed in non-CF mice. The presence of PTX3 in CF sputum, in leukocytes, or bound to P. aeruginosa macrocolonies, as well as previous data on PTX3 polymorphisms in colonized CF patients, confirm the relevance of this molecule. CONCLUSIONS: These findings represent a step forward in demonstrating the therapeutic potential of PTX3 in CF.


Subject(s)
C-Reactive Protein/therapeutic use , Mice, Inbred CFTR/microbiology , Pseudomonas Infections/immunology , Serum Amyloid P-Component/therapeutic use , Animals , Female , Fluorescent Antibody Technique, Indirect , Lung/immunology , Lung/microbiology , Lung/pathology , Male , Mice , Mice, Inbred CFTR/immunology , Phagocytosis/immunology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/pathology , Recombinant Proteins/therapeutic use
12.
J Biomed Mater Res A ; 112(8): 1305-1316, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38380736

ABSTRACT

Pulmonary infections complicate chronic lung diseases requiring attention to both the pathophysiology and complexity associated with infection management. Patients with cystic fibrosis (CF) struggle with continuous bouts of pulmonary infections, contributing to lung destruction and eventual mortality. Additionally, CF patients struggle with airways that are highly viscous, with accumulated mucus creating optimal environments for bacteria colonization. The unique physiology and altered airway environment provide an ideal niche for bacteria to change their phenotype often becoming resistant to current treatments. Colonization with multiple pathogens at the same time further complicate treatment algorithms, requiring drug combinations that can challenge CF patient tolerance to treatment. The goal of this research initiative was to explore the utilization of a microparticle antibiotic delivery system, which could provide localized and sustained antibiotic dosing. The outcome of this work demonstrates the feasibility of providing efficient localized delivery of antibiotics to manage infection using both preclinical in vitro and in vivo CF infection models. The studies outlined in this manuscript demonstrate the proof-of-concept and unique capacity of polymerized cyclodextrin microparticles to provide site-directed management of pulmonary infections.


Subject(s)
Anti-Bacterial Agents , Cyclodextrins , Cystic Fibrosis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Animals , Cyclodextrins/chemistry , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Lung/pathology , Lung/microbiology , Drug Delivery Systems , Mice , Polymerization
13.
Tuberculosis (Edinb) ; 147: 102503, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729070

ABSTRACT

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.


Subject(s)
Disease Models, Animal , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Mycobacterium abscessus/drug effects , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Mice , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Humans , Drug Evaluation, Preclinical/methods , Lung/microbiology , Lung/drug effects , Lung/immunology
14.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-37259368

ABSTRACT

Human Mesenchymal Stem Cell (hMSC) immunotherapy has been shown to provide both anti-inflammatory and anti-microbial effectiveness in a variety of diseases. The clinical potency of hMSCs is based upon an initial direct hMSC effect on the pro-inflammatory and anti-microbial pathophysiology as well as sustained potency through orchestrating the host immunity to optimize the resolution of infection and tissue damage. Cystic fibrosis (CF) patients suffer from a lung disease characterized by excessive inflammation and chronic infection as well as a variety of other systemic anomalies associated with the consequences of abnormal cystic fibrosis transmembrane conductance regulator (CFTR) function. The application of hMSC immunotherapy to the CF clinical armamentarium is important even in the era of modulators when patients with an established disease still need anti-inflammatory and anti-microbial therapies. Additionally, people with CF mutations not addressed by current modulator resources need anti-inflammation and anti-infection management. Furthermore, hMSCs possess dynamic therapeutic properties, but the potency of their products is highly variable with respect to their anti-inflammatory and anti-microbial effects. Due to the variability of hMSC products, we utilized standardized in vitro and in vivo models to select hMSC donor preparations with the greatest potential for clinical efficacy. The models that were used recapitulate many of the pathophysiologic outcomes associated with CF. We applied this strategy in pursuit of identifying the optimal donor to utilize for the "First in CF" Phase I clinical trial of hMSCs as an immunotherapy and anti-microbial therapy for people with cystic fibrosis. The hMSCs screened in this study demonstrated significant diversity in antimicrobial and anti-inflammatory function using models which mimic some aspects of CF infection and inflammation. However, the variability in activity between in vitro potency and in vivo effectiveness continues to be refined. Future studies require and in-depth pursuit of hMSC molecular signatures that ultimately predict the capacity of hMSCs to function in the clinical setting.

15.
Immunohorizons ; 7(8): 600-610, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37639224

ABSTRACT

It is indeed a privilege to be an immunologist in what is arguably the golden age of immunology. From astounding advances in fundamental knowledge to groundbreaking immunotherapeutic offerings, immunology has carved out an enviable niche for itself in basic science and clinical medicine. The need and the vital importance of appropriate education, training, and certification in clinical immunology was recognized by the World Health Organization as far back as 1972. In the United States, Ph.D. scientists with board certification in medical laboratory immunology have served as directors of high-complexity Clinical Laboratory Improvement Amendments- and College of American Pathologists-certified clinical immunology laboratories since 1977. From 1977 to 2017, board certification for medical laboratory immunology was administered by the American Society for Microbiology through the American Board of Medical Laboratory Immunology examination. The American Board of Medical Laboratory Immunology examination was phased out in 2017, and in the fall of 2019, the American Society for Clinical Pathology (ASCP) Board of Certification (BOC) examination committee took on the responsibility of developing a new doctoral-level certification examination for medical laboratory immunology. This transition to the ASCP BOC represents a well-deserved and much-needed recognition of the rapid advances in and the highly specialized nature of medical laboratory immunology and its ever-increasing relevance to patient care. This new ASCP BOC certification is called the Diplomate in Medical Laboratory Immunology, and, as of April 1, 2023, it is now available to potential examinees. In this report, we describe the examination, eligibility routes, and potential career pathways for successful diplomates.


Subject(s)
Certification , Laboratories , Humans
16.
J Cyst Fibros ; 22(3): 407-413, 2023 May.
Article in English | MEDLINE | ID: mdl-36549988

ABSTRACT

BACKGROUND: Mesenchymal stem cells are of particular interest in cystic fibrosis (CF) as a potential therapeutic. Data from pre-clinical studies suggest that allogeneic bone marrow-derived human mesenchymal stem cells (hMSCs) may provide a new therapeutic treatment for CF lung disease by attenuating pulmonary inflammation while decreasing bacterial growth and enhancing antibiotic efficacy. METHODS: Fifteen adults with CF were enrolled in a phase 1 dose-escalation trial of a single intravenous infusion of hMSCs derived from bone marrow aspirates obtained from a single pre-clinically validated healthy volunteer donor. The study employed a 3+3 dose escalation design with subjects receiving a single, intravenous dose of either 1×106, 3×106, or 5×106 hMSCs/kg. Subjects were monitored inpatient for 24 hours and by outpatient visits and telephone calls for 12 months after the infusion. Safety and tolerability were evaluated by monitoring symptoms, patient reported outcome questionnaires, adverse events (AEs), physical exam findings, spirometry, and analyses of safety laboratories. Preliminary evidence for potential efficacy using inflammatory markers in the blood and sputum were also evaluated. RESULTS: No dose-limiting toxicities, deaths or life-threatening adverse events were observed. Most AEs and serious adverse events (SAEs) were consistent with underlying CF. Vital signs, physical exam findings, spirometry and safety laboratory results showed no significant change from baseline. No trends over time were seen in serum or sputum inflammatory markers nor with clinical spirometry. CONCLUSION: Allogeneic hMSC intravenous infusions were safe and well-tolerated in this phase 1 study and warrant additional clinical testing as a potential therapeutic for CF lung disease.


Subject(s)
Cystic Fibrosis , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Adult , Cystic Fibrosis/therapy , Cystic Fibrosis/drug therapy , Administration, Intravenous , Spirometry
17.
Clin Chest Med ; 43(4): 603-615, 2022 12.
Article in English | MEDLINE | ID: mdl-36344069

ABSTRACT

Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.


Subject(s)
Cystic Fibrosis , Pneumonia , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator , Lung , Inflammation , Immunity, Innate
18.
ACR Open Rheumatol ; 4(2): 152-160, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34792869

ABSTRACT

OBJECTIVE: Seropositive rheumatoid arthritis (RA) is a chronic autoimmune disease that is rarely "cured." Human mesenchymal stem cells (hMSCs) are known to reduce inflammation and restore immune homeostasis. However, methods for predicting therapeutic hMSC potency have not been established. The goal of these studies was to use and refine an ex vivo functional assay that determines potency of hMSCs and can then be validated in clinical trials as a potency measure of hMSCs used therapeutically to treat RA. METHODS: Allogeneic hMSCs were cytokine-stimulated, and a conditioned medium (CM) was harvested. The CM was tested for the potential to attenuate RA CD4+ T cell proliferation using suppression assays. Indoleamine 2, 3-dioxygenase (IDO) mRNA, and protein were quantified in hMSCs as a measure to compare hMSCs across (prior) studies. RESULTS: To mimic a proinflammatory environment that resembles that in RA, interleukin-1(IL1ß), tumor necrosis factor α (TNFα), and interferon γ (IFNγ) (alone or in combination) were used to precondition hMSCs. Treating hMSCs with a combination of these cytokines generated a CM "secretome" that suppressed T cell proliferation between 70 and 83%. Forty-eight hours of cytokine preconditioning hMSCs was required to maximize this effect. T cell suppression positively correlated with increases in hMSC cellular IDO mRNA and protein. CONCLUSION: By standardizing assays to measure hMSC effects, their potency on T cell suppression can be quantified. These studies demonstrate that hMSCs can be compared functionally to identify optimal preparation(s) for therapeutic use in RA and that the potency of hMSC-dependent T cell suppression may differ between hMSC donors. Clinical studies are warranted to validate the hypothesis that ex vivo potency in suppressing T cells will positively correlate with a reduction in RA disease activity and increase in immunological quiescence.

19.
Exp Mol Med ; 54(5): 639-652, 2022 05.
Article in English | MEDLINE | ID: mdl-35581352

ABSTRACT

Overwhelming neutrophilic inflammation is a leading cause of lung damage in many pulmonary diseases, including cystic fibrosis (CF). The heme oxygenase-1 (HO-1)/carbon monoxide (CO) pathway mediates the resolution of inflammation and is defective in CF-affected macrophages (MΦs). Here, we provide evidence that systemic administration of PP-007, a CO releasing/O2 transfer agent, induces the expression of HO-1 in a myeloid differentiation factor 88 (MyD88) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)-dependent manner. It also rescues the reduced HO-1 levels in CF-affected cells induced in response to lipopolysaccharides (LPS) or Pseudomonas aeruginosa (PA). Treatment of CF and muco-obstructive lung disease mouse models with a single clinically relevant dose of PP-007 leads to effective resolution of lung neutrophilia and to decreased levels of proinflammatory cytokines in response to LPS. Using HO-1 conditional knockout mice, we show that the beneficial effect of PP-007 is due to the priming of circulating monocytes trafficking to the lungs in response to infection to express high levels of HO-1. Finally, we show that PP-007 does not compromise the clearance of PA in the setting of chronic airway infection. Overall, we reveal the mechanism of action of PP-007 responsible for the immunomodulatory function observed in clinical trials for a wide range of diseases and demonstrate the potential use of PP-007 in controlling neutrophilic pulmonary inflammation by promoting the expression of HO-1 in monocytes/macrophages.


Subject(s)
Cystic Fibrosis , Pneumonia , Animals , Cystic Fibrosis/complications , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Heme Oxygenase-1 , Inflammation/metabolism , Lipopolysaccharides/metabolism , Lung/pathology , Mice , Monocytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia/pathology
20.
Front Cell Infect Microbiol ; 12: 819554, 2022.
Article in English | MEDLINE | ID: mdl-35252032

ABSTRACT

Cystic fibrosis (CF) human and mouse macrophages are defective in their ability to clear bacteria such as Burkholderia cenocepacia. The autophagy process in CF (F508del) macrophages is halted, and the underlying mechanism remains unclear. Furthermore, the role of CFTR in maintaining the acidification of endosomal and lysosomal compartments in CF cells has been a subject of debate. Using 3D reconstruction of z-stack confocal images, we show that CFTR is recruited to LC3-labeled autophagosomes harboring B. cenocepacia. Using several complementary approaches, we report that CF macrophages display defective lysosomal acidification and degradative function for cargos destined to autophagosomes, whereas non-autophagosomal cargos are effectively degraded within acidic compartments. Notably, treatment of CF macrophages with CFTR modulators (tezacaftor/ivacaftor) improved the autophagy flux, lysosomal acidification and function, and bacterial clearance. In addition, CFTR modulators improved CFTR function as demonstrated by patch-clamp. In conclusion, CFTR regulates the acidification of a specific subset of lysosomes that specifically fuse with autophagosomes. Therefore, our study describes a new biological location and function for CFTR in autophago-lysosomes and clarifies the long-standing discrepancies in the field.


Subject(s)
Burkholderia cenocepacia , Cystic Fibrosis , Animals , Burkholderia cenocepacia/metabolism , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Hydrogen-Ion Concentration , Lysosomes/metabolism , Macrophages/microbiology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL