Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203724

ABSTRACT

Numerous studies have shown that hedgehog inhibitors (iHHs) only partially block the growth of tumor cells, especially in vivo. Leukemia often expands in a nutrient-depleted environment (bone marrow and thymus). In order to identify putative signaling pathways implicated in the adaptive response to metabolically adverse conditions, we executed quantitative phospho-proteomics in T-cell acute lymphoblastic leukemia (T-ALL) cells subjected to nutrient-depleted conditions (serum starvation). We found important modulations of peptides phosphorylated by critical signaling pathways including casein kinase, mammalian target of rapamycin, and 5'AMP-activated kinase (AMPK). Surprisingly, in T-ALL cells, AMPK signaling was the most consistently downregulated pathway under serum-depleted conditions, and this coincided with increased GLI1 expression and sensitivity to iHHs, especially the GLI1/2 inhibitor GANT-61. Increased sensitivity to GANT-61 was also found following genetic inactivation of the catalytic subunit of AMPK (AMPKα1) or pharmacological inhibition of AMPK by Compound C. Additionally, patient-derived xenografts showing high GLI1 expression lacked activated AMPK, suggesting an important role for this signaling pathway in regulating GLI1 protein levels. Further, joint targeting of HH and AMPK signaling pathways in T-ALL cells by GANT-61 and Compound C significantly increased the therapeutic response. Our results suggest that metabolic adaptation that occurs under nutrient starvation in T-ALL cells increases responsiveness to HH pathway inhibitors through an AMPK-dependent mechanism and that joint therapeutic targeting of AMPK signaling and HH signaling could represent a valid therapeutic strategy in rapidly expanding tumors where nutrient availability becomes limiting.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Hedgehog Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction , AMP-Activated Protein Kinases/genetics , Cell Death/drug effects , Culture Media, Serum-Free/pharmacology , Enzyme Activation/drug effects , Humans , Jurkat Cells , Mechanistic Target of Rapamycin Complex 1/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Zinc Finger Protein GLI1/metabolism
2.
Int J Mol Sci ; 18(9)2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28872614

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , Cell Differentiation/physiology , Central Nervous System/metabolism , Humans , Signal Transduction/physiology
3.
Hepatol Commun ; 7(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37870985

ABSTRACT

BACKGROUND: Vaccine hesitancy and lack of access remain major issues in disseminating COVID-19 vaccination to liver patients globally. Factors predicting poor response to vaccination and risk of breakthrough infection are important data to target booster vaccine programs. The primary aim of the current study was to measure humoral responses to 2 doses of COVID-19 vaccine. Secondary aims included the determination of factors predicting breakthrough infection. METHODS: COVID-19 vaccination and Biomarkers in cirrhosis And post-Liver Transplantation is a prospective, multicenter, observational case-control study. Participants were recruited at 4-10 weeks following first and second vaccine doses in cirrhosis [n = 325; 94% messenger RNA (mRNA) and 6% viral vaccine], autoimmune liver disease (AILD) (n = 120; 77% mRNA and 23% viral vaccine), post-liver transplant (LT) (n = 146; 96% mRNA and 3% viral vaccine), and healthy controls (n = 51; 72% mRNA, 24% viral and 4% heterologous combination). Serological end points were measured, and data regarding breakthrough SARS-CoV-2 infection were collected. RESULTS: After adjusting by age, sex, and time of sample collection, anti-Spike IgG levels were the lowest in post-LT patients compared to cirrhosis (p < 0.0001), AILD (p < 0.0001), and control (p = 0.002). Factors predicting reduced responses included older age, Child-Turcotte-Pugh B/C, and elevated IL-6 in cirrhosis; non-mRNA vaccine in AILD; and coronary artery disease, use of mycophenolate and dysregulated B-call activating factor, and lymphotoxin-α levels in LT. Incident infection occurred in 6.6%, 10.6%, 7.4%, and 15.6% of cirrhosis, AILD, post-LT, and control, respectively. The only independent factor predicting infection in cirrhosis was low albumin level. CONCLUSIONS: LT patients present the lowest response to the SARS-CoV-2 vaccine. In cirrhosis, the reduced response is associated with older age, stage of liver disease and systemic inflammation, and breakthrough infection with low albumin level.


Subject(s)
COVID-19 , Liver Transplantation , Viral Vaccines , Humans , Albumins , Breakthrough Infections , Case-Control Studies , COVID-19/prevention & control , COVID-19 Vaccines , Liver Cirrhosis , Liver Transplantation/adverse effects , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination
4.
Leukemia ; 35(4): 984-1000, 2021 04.
Article in English | MEDLINE | ID: mdl-32733009

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a highly malignant pediatric leukemia, where few therapeutic options are available for patients which relapse. We find that therapeutic targeting of GLI transcription factors by GANT-61 is particularly effective against NOTCH1 unmutated T-ALL cells. Investigation of the functional role of GLI1 disclosed that it contributes to T-ALL cell proliferation, survival, and dissemination through the modulation of AKT and CXCR4 signaling pathways. Decreased CXCR4 signaling following GLI1 inactivation was found to be prevalently due to post-transcriptional mechanisms including altered serine 339 CXCR4 phosphorylation and cortactin levels. We also identify a novel cross-talk between GLI transcription factors and FOXC1. Indeed, GLI factors can activate the expression of FOXC1 which is able to stabilize GLI1/2 protein levels through attenuation of their ubiquitination. Further, we find that prolonged GLI1 deficiency has a double-edged role in T-ALL progression favoring disease dissemination through the activation of a putative AKT/FOXC1/GLI2 axis. These findings have clinical significance as T-ALL patients with extensive central nervous system dissemination show low GLI1 transcript levels. Further, T-ALL patients having a GLI2-based Hedgehog activation signature are associated with poor survival. Together, these findings support a rationale for targeting the FOXC1/AKT axis to prevent GLI-dependent oncogenic Hedgehog signaling.


Subject(s)
Forkhead Transcription Factors/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction , Zinc Finger Protein GLI1/metabolism , Animals , Apoptosis , Biopsy , Cell Cycle Checkpoints , Computational Biology/methods , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Silencing , Hedgehog Proteins/metabolism , Humans , Immunohistochemistry , Mice , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Prognosis , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Receptors, CXCR4/metabolism , Transcription Factors
5.
Oncogene ; 39(42): 6544-6555, 2020 10.
Article in English | MEDLINE | ID: mdl-32917954

ABSTRACT

Notwithstanding intensified therapy, a considerable fraction of T-cell acute lymphoblastic leukemia (T-ALL) patients face a dismal prognosis due to primary resistance to treatment and relapse, raising the need for more efficient and targeted therapies. Hedgehog (HH) signaling is a major developmental pathway frequently deregulated in cancer, for which a role in T-ALL is emerging. Mounting evidence suggests that ligand-independent activation of HH pathway occurs in cancer including T-ALL, emphasizing the necessity of dissecting the complex interplay between HH and other signaling pathways regulating activation. In this work, we present a therapeutically relevant crosstalk between HH signaling and the glucocorticoid receptor (NR3C1) pathway acting at the level of GLI1 transcription factor. GLI inhibitor GANT61 and dexamethasone were shown to exert a synergistic anti-leukemic effect in vitro in T-ALL cell lines and patient-derived xenografts. Mechanistically, dexamethasone-activated NR3C1 impaired GLI1 function by dynamically modulating the recruitment of PCAF acetyltransferase and HDAC1 deacetylase. Increased GLI1 acetylation was associated with compromised transcriptional activity and reduced protein stability. In summary, our study identifies a novel crosstalk between GLI1 and NR3C1 signaling pathway which could be exploited in HH-dependent malignancies to increase therapeutic efficacy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Hedgehog Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Receptors, Glucocorticoid/metabolism , Signal Transduction/drug effects , Acetylation , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Drug Synergism , Gene Expression Regulation, Leukemic/drug effects , Hedgehog Proteins/antagonists & inhibitors , Histone Deacetylase 1/metabolism , Humans , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Stability/drug effects , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Receptors, Glucocorticoid/agonists , Signal Transduction/genetics , Xenograft Model Antitumor Assays , Zinc Finger Protein GLI1/antagonists & inhibitors , Zinc Finger Protein GLI1/metabolism , p300-CBP Transcription Factors/metabolism
6.
Cells ; 9(7)2020 07 18.
Article in English | MEDLINE | ID: mdl-32708470

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.


Subject(s)
Disease Progression , MicroRNAs/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Leukemic , Humans , Mice , MicroRNAs/genetics , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/metabolism , Up-Regulation/genetics
7.
Cells ; 7(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304769

ABSTRACT

MYC-translocated T-lineage acute lymphoblastic leukemia (T-ALL) is a rare subgroup of T-ALL associated with CDKN2A/B deletions, PTEN inactivation, and absence of NOTCH1 or FBXW7 mutations. This subtype of T-ALL has been associated with induction failure and aggressive disease. Identification of drug targets and mechanistic insights for this disease are still limited. Here, we established a human NOTCH1-independent MYC-translocated T-ALL cell line that maintains the genetic and phenotypic characteristics of the parental leukemic clone at diagnosis. The University of Padua T-cell acute lymphoblastic leukemia 13 (UP-ALL13) cell line has all the main features of the above described MYC-translocated T-ALL. Interestingly, UP-ALL13 was found to harbor a heterozygous R882H DNMT3A mutation typically found in myeloid leukemia. Chromatin immunoprecipitation coupled with high-throughput sequencing for histone H3 lysine 27 (H3K27) acetylation revealed numerous putative super-enhancers near key transcription factors, including MYC, MYB, and LEF1. Marked cytotoxicity was found following bromodomain-containing protein 4 (BRD4) inhibition with AZD5153, suggesting a strict dependency of this particular subtype of T-ALL on the activity of super-enhancers. Altogether, this cell line may be a useful model system for dissecting the signaling pathways implicated in NOTCH1-independent T-ALL and for the screening of targeted anti-leukemia agents specific for this T-ALL subgroup.

SELECTION OF CITATIONS
SEARCH DETAIL