Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Chem Phys ; 153(12): 124114, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33003704

ABSTRACT

Quantum Monte Carlo (QMC) belongs to the most accurate simulation techniques for quantum many-particle systems. However, for fermions, these simulations are hampered by the sign problem that prohibits simulations in the regime of strong degeneracy. The situation changed with the development of configuration path integral Monte Carlo (CPIMC) by Schoof et al. [Contrib. Plasma Phys. 51, 687 (2011)] that allowed for the first ab initio simulations for dense quantum plasmas [Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)]. CPIMC also has a sign problem that occurs when the density is lowered, i.e., in a parameter range that is complementary to traditional QMC formulated in coordinate space. Thus, CPIMC simulations for the warm dense electron gas are limited to small values of the Brueckner parameter-the ratio of the interparticle distance to the Bohr radius-rs=r¯/aB≲1. In order to reach the regime of stronger coupling (lower density) with CPIMC, here we investigate additional restrictions on the Monte Carlo procedure. In particular, we introduce two different versions of "restricted CPIMC"-called RCPIMC and RCPIMC+-where certain sign changing Monte Carlo updates are being omitted. Interestingly, one of the methods (RCPIMC) has no sign problem at all, but it introduces a systematic error and is less accurate than RCPIMC+, which neglects only a smaller class of the Monte Carlo steps. Here, we report extensive simulations for the ferromagnetic uniform electron gas with which we investigate the properties and accuracy of RCPIMC and RCPIMC+. Furthermore, we establish the parameter range in the density-temperature plane where these simulations are both feasible and accurate. The conclusion is that RCPIMC and RCPIMC+ work best at temperatures in the range of Θ = kBT/EF ∼ 0.1…0.5, where EF is the Fermi energy, allowing to reach density parameters up to rs ∼ 3…5, thereby partially filling a gap left open by existing ab initio QMC methods.

2.
J Chem Phys ; 151(1): 014108, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31272157

ABSTRACT

Being motivated by the surge of fermionic quantum Monte Carlo simulations at finite temperature, we present a detailed analysis of the permutation-cycle properties of path integral Monte Carlo (PIMC) simulations of degenerate electrons. Particular emphasis is put onto the uniform electron gas in the warm dense matter regime. We carry out PIMC simulations of up to N = 100 electrons and investigate exchange-cycle frequencies, which are found not to follow any simple exponential law even in the case of ideal fermions due to the finite size of the simulation box. Moreover, we introduce a permutation-cycle correlation function, which allows us to analyze the joint probability to simultaneously find cycles of different lengths within a single configuration. Again, we find that finite-size effects predominate the observed behavior. Finally, we briefly consider an inhomogeneous system, namely, electrons in a 2D harmonic trap. We expect our results to be of interest for the further development of fermionic PIMC methods, in particular, to alleviate the notorious fermion sign problem.

3.
J Chem Phys ; 151(19): 194104, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31757143

ABSTRACT

The study of matter at extreme densities and temperatures as they occur in astrophysical objects and state-of-the-art experiments with high-intensity lasers is of high current interest for many applications. While no overarching theory for this regime exists, accurate data for the density response of correlated electrons to an external perturbation are of paramount importance. In this context, the key quantity is given by the local field correction (LFC), which provides a wave-vector resolved description of exchange-correlation effects. In this work, we present extensive new path integral Monte Carlo (PIMC) results for the static LFC of the uniform electron gas, which are subsequently used to train a fully connected deep neural network. This allows us to present a representation of the LFC with respect to continuous wave-vectors, densities, and temperatures covering the entire warm dense matter regime. Both the PIMC data and neural-net results are available online. Moreover, we expect the presented combination of ab initio calculations with machine-learning methods to be a promising strategy for many applications.

4.
Phys Rev Lett ; 121(25): 255001, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608805

ABSTRACT

The accurate description of electrons at extreme density and temperature is of paramount importance for, e.g., the understanding of astrophysical objects and inertial confinement fusion. In this context, the dynamic structure factor S(q,ω) constitutes a key quantity as it is directly measured in x-ray Thomson scattering experiments and governs transport properties like the dynamic conductivity. In this work, we present the first ab initio results for S(q,ω) by carrying out extensive path integral Monte Carlo simulations and developing a new method for the required analytic continuation, which is based on the stochastic sampling of the dynamic local field correction G(q,ω). In addition, we find that the so-called static approximation constitutes a promising opportunity to obtain high-quality data for S(q,ω) over substantial parts of the warm dense matter regime.

5.
Phys Rev Lett ; 115(13): 130402, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26451539

ABSTRACT

The uniform electron gas at finite temperature is of key relevance for many applications in dense plasmas, warm dense matter, laser excited solids, and much more. Accurate thermodynamic data for the uniform electron gas are an essential ingredient for many-body theories, in particular, density-functional theory. Recently, first-principles restricted path integral Monte Carlo results became available, which, however, had to be restricted to moderate degeneracy, i.e., low to moderate densities with r_{s}=r[over ¯]/a_{B}≳1. Here we present novel first-principles configuration path integral Monte Carlo results for electrons for r_{s}≤4. We also present quantum statistical data within the e^{4} approximation that are in good agreement with the simulations at small to moderate r_{s}.

6.
Phys Rev Lett ; 111(6): 065001, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23971579

ABSTRACT

Crystallization in a two-dimensional strongly coupled plasma from a rapidly cooled fluid is found to be efficiently blocked by an external magnetic field. Beyond a threshold of the magnetic field strength B, the relaxation time to the equilibrium crystal increases exponentially with B, which is attributed to an impeded conversion of potential to kinetic energy. Our finding is opposed to the standard picture of two-dimensional freezing of one-component systems which does not exhibit a nucleation barrier and opens the way to keep two-dimensional fluids metastable over long times.

7.
Phys Rev Lett ; 111(25): 256801, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24483751

ABSTRACT

An analytical expression for the quantum breathing frequency ωb of harmonically trapped quantum particles with inverse power-law repulsion is derived. It is verified by ab initio numerical calculations for electrons confined in a lateral (2D) quantum dot. We show how this relation can be used to express the ground state properties of harmonically trapped quantum particles as functions of the breathing frequency by presenting analytical results for the kinetic, trap, and repulsive energy and for the linear entropy. Measurement of ωb together with these analytical relations represents a tool to characterize the state of harmonically trapped interacting particles--from the Fermi gas to the Wigner crystal regime.

8.
Phys Rev E ; 108(5-2): 055212, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115427

ABSTRACT

We present improved first-principle fermionic path integral Monte Carlo (PIMC) simulation results for a dense partially ionized hydrogen (deuterium) plasma, for temperatures in the range 15000K≤T≤400000K and densities 7×10^{-7}g/cm^{3}≤ρ_{H}≤0.085g/cm^{3} (1.4×10^{-6}g/cm^{3}≤ρ_{D}≤0.17g/cm^{3}), corresponding to 100≥r_{s}≥2, where r_{s}=r[over ¯]/a_{B} is the ratio of the mean interparticle distance to the Bohr radius. These simulations are based on the fermionic propagator PIMC (FP-PIMC) approach in the grand canonical ensemble [Filinov et al., Contrib. Plasma Phys. 61, e202100112 (2021)0863-104210.1002/ctpp.202100112] and fully account for correlation and quantum degeneracy and spin effects. For the application to hydrogen and deuterium, we develop a combination of the fourth-order factorization and the pair product ansatz for the density matrix. Moreover, we avoid the fixed node approximation that may lead to uncontrolled errors in restricted PIMC (RPIMC). Our results allow us to critically reevaluate the accuracy of the RPIMC simulations for hydrogen by Hu et al. [Phys. Rev. B 84, 224109 (2011)1098-012110.1103/PhysRevB.84.224109] and of various chemical models. The deviations are generally found to be small, but for the lowest temperature, T=15640 K they reach several percent. We present detailed tables with our first principles results for the pressure and energy isotherms. We expect our updated results will serve as a valuable benchmark for comparison with other methods.

9.
Phys Rev Lett ; 108(25): 255002, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-23004607

ABSTRACT

A first-principles study of the collective oscillation spectrum of a strongly correlated one-component plasma in a strong magnetic field is presented. The spectrum consists of six fundamental modes that are found to be in good agreement with results from the quasilocalized charge approximation. At high frequencies, additional modes are observed that include Bernstein-type oscillations and their transverse counterparts, which are of importance for the high-frequency optical and transport properties of these plasmas.

10.
Phys Rev Lett ; 109(15): 155003, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102318

ABSTRACT

We propose and demonstrate a concept that mimics the magnetization of the heavy dust particles in a complex plasma while leaving the properties of the light species practically unaffected. It makes use of the frictional coupling between a complex plasma and the neutral gas, which allows us to transfer angular momentum from a rotating gas column to a well-controlled rotation of the dust cloud. This induces a Coriolis force that acts exactly as the Lorentz force in a magnetic field. Experimental normal mode measurements for a small dust cluster with four particles show excellent agreement with theoretical predictions for a magnetized plasma.

11.
Phys Rev Lett ; 108(25): 253003, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-23004594

ABSTRACT

Auger decay carries valuable information about the electronic structure and dynamics of atoms, molecules, and solids. Here we furnish evidence that under certain conditions Auger electrons are subject to an energetic chirp. The effect is disclosed in time-resolved streaking experiments on the Xe NOO and Kr MNN Auger decay using extreme-ultraviolet pulses from the free-electron laser in Hamburg as well as from a high-order harmonic laser source. The origin of this effect is found to be an exchange of energy between the Auger electron and an earlier emitted correlated photoelectron. The observed time-dependent spectral modulations are understood within an analytical model and confirmed by extensive computer simulations.

12.
Phys Rev Lett ; 107(13): 135003, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-22026863

ABSTRACT

A first-principles study of diffusion in a strongly coupled one-component plasma in a magnetic field B is presented. As in a weakly coupled plasma, the diffusion coefficient perpendicular to the field exhibits a Bohm-like 1/B behavior in the strong-field limit but its overall scaling is substantially different. The diffusion coefficient parallel to the field is strongly affected by the field as well and also approaches a 1/B scaling, in striking contrast to earlier predictions.

13.
Phys Rev E ; 103(1-1): 013210, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33601505

ABSTRACT

We present a finite-temperature density-functional-theory investigation of the nonequilibrium transient electronic structure of warm dense Li, Al, Cu, and Au created by laser excitation. Photons excite electrons either from the inner shell orbitals or from the valence bands according to the photon energy, and give rise to isochoric heating of the sample. Localized states related to the 3d orbital are observed for Cu when the hole lies in the inner shell 3s orbital. The electrical conductivity for these materials at nonequilibrium states is calculated using the Kubo-Greenwood formula. The change of the electrical conductivity, compared to the equilibrium state, is different for the case of holes in inner shell orbitals or the valence band. This is attributed to the competition of two factors: the shift of the orbital energies due to reduced screening of core electrons, and the increase of chemical potential due to the excitation of electrons. The finite-temperature effect of both the electrons and the ions on the electrical conductivity is discussed in detail. This work is helpful to better understand the physics of laser excitation experiments of warm dense matter.

14.
Phys Rev Lett ; 104(1): 015001, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20366366

ABSTRACT

The correlation buildup and the formation dynamics of the shell structure in a spherically confined one-component plasma are studied. Using Langevin dynamics simulations the relaxation processes and characteristic time scales and their dependence on the pair interaction and dissipation in the plasma are investigated. While in systems with Coulomb interaction (e.g., trapped ions) in a harmonic confinement shell formation starts at the plasma edge and proceeds inward, this trend is significantly weakened for dusty plasmas with Yukawa interaction. With a suitable change of the confinement conditions the crystallization scenario can be externally controlled.

15.
Phys Rev Lett ; 105(7): 070401, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20868021

ABSTRACT

The superfluid to normal fluid transition of dipolar bosons in two dimensions is studied in a broad density range by using path integral Monte Carlo simulations and summarized in the phase diagram. While at low densities we find good agreement with the universal results depending only on the scattering length a{s}, at moderate and high densities the transition temperature is strongly affected by interactions and the excitation spectrum of quasiparticles. The results are expected to be of relevance to dipolar atomic and molecular systems and indirect excitons in quantum wells.

16.
Phys Rev Lett ; 105(5): 055002, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20867926

ABSTRACT

The existence of plasma oscillations at multiples of the magnetoplasmon frequency in a strongly coupled two-dimensional magnetized Yukawa plasma is reported, based on extensive molecular dynamics simulations. These modes are the analogues of Bernstein modes which are renormalized by strong interparticle correlations. Their properties are theoretically explained by a dielectric function incorporating the combined effect of a magnetic field, strong correlations and finite temperature.

17.
J Phys Condens Matter ; 32(10): 103001, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-31247604

ABSTRACT

This article presents an overview on recent progress in the theory of nonequilibrium Green functions (NEGF). We discuss applications of NEGF simulations to describe the femtosecond dynamics of various finite fermionic systems following an excitation out of equilibrium. This includes the expansion dynamics of ultracold atoms in optical lattices following a confinement quench and the excitation of strongly correlated electrons in a solid by the impact of a charged particle. NEGF, presently, are the only ab initio quantum approach that is able to study the dynamics of correlations for long times in two and three dimensions. However, until recently, NEGF simulations have mostly been performed with rather simple selfenergy approximations such as the second-order Born approximation (SOA). While they correctly capture the qualitative trends of the relaxation towards equilibrium, the reliability and accuracy of these NEGF simulations has remained open, for a long time. Here we report on recent tests of NEGF simulations for finite lattice systems against exact-diagonalization and density-matrix-renormalization-group benchmark data. The results confirm the high accuracy and predictive capability of NEGF simulations-provided selfenergies are used that go beyond the SOA and adequately include strong correlation and dynamical-screening effects. With an extended arsenal of selfenergies that can be used effectively, the NEGF approach has the potential of becoming a powerful simulation tool with broad areas of new applications including strongly correlated solids and ultracold atoms. The present review aims at making such applications possible. To this end we present a selfcontained introduction to the theory of NEGF and give an overview on recent numerical applications to compute the ultrafast relaxation dynamics of correlated fermions. In the second part we give a detailed introduction to selfenergies beyond the SOA. Important examples are the third-order approximation, the [Formula: see text] approximation, the T-matrix approximation and the fluctuating-exchange approximation. We give a comprehensive summary of the explicit selfenergy expressions for a variety of systems of practical relevance, starting from the most general expressions (general basis) and the Feynman diagrams, and including also the important cases of diagonal basis sets, the Hubbard model and the differences occuring for bosons and fermions. With these details, and information on the computational effort and scaling with the basis size and propagation duration, readers will be able to choose the proper basis set and straightforwardly implement and apply advanced selfenergy approximations to a broad class of systems.

18.
Phys Rev E ; 101(5-1): 053203, 2020 May.
Article in English | MEDLINE | ID: mdl-32575188

ABSTRACT

We investigate the energy-loss characteristics of an ion in warm dense matter (WDM) and dense plasmas concentrating on the influence of electronic correlations. The basis for our analysis is a recently developed ab initio quantum Monte Carlo- (QMC) based machine learning representation of the static local field correction (LFC) [Dornheim et al., J. Chem. Phys. 151, 194104 (2019)JCPSA60021-960610.1063/1.5123013], which provides an accurate description of the dynamical density response function of the electron gas at the considered parameters. We focus on the polarization-induced stopping power due to free electrons, the friction function, and the straggling rate. In addition, we compute the friction coefficient which constitutes a key quantity for the adequate Langevin dynamics simulation of ions. Considering typical experimental WDM parameters with partially degenerate electrons, we find that the friction coefficient is of the order of γ/ω_{pi}=0.01, where ω_{pi} is the ionic plasma frequency. This analysis is performed by comparing QMC-based data to results from the random-phase approximation (RPA), the Mermin dielectric function, and the Singwi-Tosi-Land-Sjölander (STLS) approximation. It is revealed that the widely used relaxation time approximation (Mermin dielectric function) has severe limitations regarding the description of the energy loss of ions in a correlated partially degenerate electrons gas. Moreover, by comparing QMC-based data with the results obtained using STLS, we find that the ion energy-loss properties are not sensitive to the inaccuracy of the static local field correction (LFC) at large wave numbers, k/k_{F}>2 (with k_{F} being the Fermi wave number), but that a correct description of the static LFC at k/k_{F}≲1.5 is important.

19.
Phys Rev Lett ; 103(19): 195001, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-20365932

ABSTRACT

There have recently been many predictions of "superdiffusion" in two-dimensional strongly coupled Yukawa systems, both by computer simulations and in dusty plasma experiments, with substantially varying diffusion exponents. Here we show that the results crucially depend on the strength of dissipation and the time instant of the measurement. For sufficiently large friction even subdiffusion is possible. However, there are strong indications that, in the long-time limit, anomalous diffusion vanishes and the system returns to normal diffusion, for dissipative as well as for frictionless systems.

20.
Phys Rev E ; 99(5-1): 053203, 2019 May.
Article in English | MEDLINE | ID: mdl-31212426

ABSTRACT

The dynamical structure factor (DSF) of strongly coupled ions in dense plasmas with partially and strongly degenerate electrons is investigated. The main focus is on the impact of electronic correlations (nonideality) on the ionic DSF. The latter is computed by carrying out molecular dynamics (MD) simulations with a screened ion-ion interaction potential. The electronic screening is taken into account by invoking the Singwi-Tosi-Land-Sjölander approximation, and it is compared to the MD simulation data obtained considering the electronic screening in the random phase approximation and using the Yukawa potential. We find that electronic correlations lead to lower values of the ion-acoustic mode frequencies and to an extension of the applicability limit with respect to the wave-number of a hydrodynamic description. Moreover, we show that even in the limit of weak electronic coupling, electronic correlations have a nonnegligible impact on the ionic longitudinal sound speed. Additionally, the applicability of the Yukawa potential with an adjustable screening parameter is discussed, which will be of interest, e.g., for the interpretation of experimental results for the ionic DSF of dense plasmas.

SELECTION OF CITATIONS
SEARCH DETAIL