Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Crit Rev Clin Lab Sci ; 61(2): 140-163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37815417

ABSTRACT

The integration of artificial intelligence technologies has propelled the progress of clinical and genomic medicine in recent years. The significant increase in computing power has facilitated the ability of artificial intelligence models to analyze and extract features from extensive medical data and images, thereby contributing to the advancement of intelligent diagnostic tools. Artificial intelligence (AI) models have been utilized in the field of personalized medicine to integrate clinical data and genomic information of patients. This integration allows for the identification of customized treatment recommendations, ultimately leading to enhanced patient outcomes. Notwithstanding the notable advancements, the application of artificial intelligence (AI) in the field of medicine is impeded by various obstacles such as the limited availability of clinical and genomic data, the diversity of datasets, ethical implications, and the inconclusive interpretation of AI models' results. In this review, a comprehensive evaluation of multiple machine learning algorithms utilized in the fields of clinical and genomic medicine is conducted. Furthermore, we present an overview of the implementation of artificial intelligence (AI) in the fields of clinical medicine, drug discovery, and genomic medicine. Finally, a number of constraints pertaining to the implementation of artificial intelligence within the healthcare industry are examined.


Subject(s)
Artificial Intelligence , Genomic Medicine , Humans , Machine Learning , Algorithms , Delivery of Health Care
2.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891926

ABSTRACT

Despite advancements in vaccinology, there is currently no effective anti-HIV vaccine. One strategy under investigation is based on the identification of epitopes recognized by broadly neutralizing antibodies to include in vaccine preparation. Taking into account the benefits of anti-idiotype molecules and the diverse biological attributes of different antibody formats, our aim was to identify the most immunogenic antibody format. This format could serve as a foundational element for the development of an oligo-polyclonal anti-idiotype vaccine against HIV-1. For our investigation, we anchored our study on an established b12 anti-idiotype, referred to as P1, and proposed four distinct formats: two single chains and two minibodies, both in two different orientations. For a deeper characterization of these molecules, we used immunoinformatic tools and tested them on rabbits. Our studies have revealed that a particular minibody conformation, MbVHVL, emerges as the most promising candidate. It demonstrates a significant binding affinity with b12 and elicits a humoral anti-HIV-1 response in rabbits similar to the Fab format. This study marks the first instance where the minibody format has been shown to provoke a humoral response against a pathogen. Furthermore, this format presents biological advantages over the Fab format, including bivalency and being encoded by a monocistronic gene, making it better suited for the development of RNA-based vaccines.


Subject(s)
AIDS Vaccines , Antibodies, Anti-Idiotypic , HIV Antibodies , HIV-1 , Immunity, Humoral , Animals , Rabbits , HIV Antibodies/immunology , HIV-1/immunology , Immunity, Humoral/immunology , Antibodies, Anti-Idiotypic/immunology , AIDS Vaccines/immunology , HIV Infections/immunology , HIV Infections/virology , Humans , Antibodies, Neutralizing/immunology , Computer Simulation , Epitopes/immunology
3.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430609

ABSTRACT

Goat cheese is an important element of the Mediterranean diet, appreciated for its health-promoting features and unique taste. A pivotal role in the development of these characteristics is attributed to the microbiota and its continuous remodeling over space and time. Nevertheless, no thorough study of the cheese-associated microbiota using two metaomics approaches has previously been conducted. Here, we employed 16S rRNA gene sequencing and metaproteomics to explore the microbiota of a typical raw goat milk cheese at various ripening timepoints and depths of the cheese wheel. The 16S rRNA gene-sequencing and metaproteomics results described a stable microbiota ecology across the selected ripening timepoints, providing evidence for the microbiologically driven fermentation of goat milk products. The important features of the microbiota harbored on the surface and in the core of the cheese mass were highlighted in both compositional and functional terms. We observed the rind microbiota struggling to maintain the biosafety of the cheese through competition mechanisms and/or by preventing the colonization of the cheese by pathobionts of animal or environmental origin. The core microbiota was focused on other biochemical processes, supporting its role in the development of both the health benefits and the pleasant gustatory nuances of goat cheese.


Subject(s)
Cheese , Microbiota , One Health , Animals , Cheese/analysis , Goats/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Microbiota/genetics
4.
Int J Mol Sci ; 21(11)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516966

ABSTRACT

Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes. These includes the bi-directional crosstalk between the central nervous system, the enteric nervous system, and the gastrointestinal tract (i.e., gut-brain axis). The increasing accumulation of evidence suggest a pivotal role of the composition and activity of the gut microbiota in neurodegeneration. In the present review we aim to provide an overview of the state-of-the-art of meta-omics sciences including metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and metabolites, respectively. The potential and limitations of each discipline were highlighted, as well as the advantages of an integrated approach (multi-omics) to predict microbial functions and molecular mechanisms related to human diseases. Particular emphasis is given to the latest results obtained with these approaches in an attempt to elucidate the link between the gut microbiota and the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).


Subject(s)
Brain/physiology , Disease Susceptibility , Feedback, Physiological , Gastrointestinal Tract/physiology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Animals , Genomics/methods , Humans , Metabolomics/methods , Metagenomics/methods , Microbiota , Proteomics/methods
5.
Adv Exp Med Biol ; 1158: 45-57, 2019.
Article in English | MEDLINE | ID: mdl-31452134

ABSTRACT

The centrality of the mitochondrion in the evolution and control of the cellare now supported by many experimental studies. Not only with regard to the energy metabolism but also and especially with regard to the other functions indispensable for the cell such as apoptosis and the control of innate immunity through different complex cell signaling pathways. All this makes them one of the main targets during infections supported by pathogenic microorganisms. The interaction and control of these organelles by pathogens results, from the latest experimental evidence, of fundamental importance in the fate of the host cell and in the progression of infectious diseases.


Subject(s)
Host-Pathogen Interactions , Mitochondria , Apoptosis , Immunity, Innate , Mitochondria/metabolism , Signal Transduction
6.
BMC Vet Res ; 13(1): 43, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28173805

ABSTRACT

BACKGROUND: Myxomatous mitral valve disease (MVD) is the most common acquired heart disease in dogs, and the Cavalier King Charles Spaniel (CKCS) is the most studied breed because of the high prevalence, early onset and hereditary component evidenced in the breed. MVD has different severity levels, and there are many practical limitations in identifying its asymptomatic stages. Proteomic techniques are valuable for studying the proteins and peptides involved in cardiovascular diseases, including the period prior to the clinical onset of the disease. The aim of this study was to identify the serum proteins that were differentially expressed in healthy CKCS and those affected by MVD in mild to severe stages. Proteomics analysis was performed using two-dimensional gel electrophoresis separation and a bioinformatics analysis for the detection of differentially expressed spots. In a comparative analysis, protein spots with a p < 0.05 (ANOVA) were considered statistically significant and were excised from the gels for analysis by MALDI-TOF-MS for protein identification. RESULTS: Eight proteins resulted differentially expressed among the groups and significantly related to the progression of the disease. In mild affected group versus healthy dogs complement factor H isoform 2, inhibitor of carbonic anhydrase, hemopexin, dystrobrevin beta isoform X7 and CD5 molecule-like resulted to be down-regulated, whereas fibronectin type-III domain-containing protein 3A isoform X4 was up-regulated. In severe affected dogs versus healthy group complement factor H isoform 2, calpain-3 isoform X2, dystrobrevin beta isoform X7, CD5 molecule-like and l-2-hydroxyglutarate dehydrogenase resulted to be down-regulated. Complement factor H isoform 2, calpain-3 isoform X2, dystrobrevin beta isoform X7, CD5 molecule-like and hydroxyglutarate dehydrogenase were found to be down-regulated in mild affected group versus healthy dogs. All of these proteins except complement factor H followed a decreasing trend according to the progression of the pathology. CONCLUSION: The differential expression of serum proteins demonstrates the possibility these might be valuable for the detection and monitoring of the disease. Further longitudinal studies are required to determine whether differential protein expression occurs sufficiently early in the progression of the disease and with sufficient predictive value to allow proteomics analysis to be used as an early detection and on-line diagnostic tool.


Subject(s)
Dog Diseases/blood , Heart Valve Diseases/veterinary , Proteome , Animals , Blood Proteins/analysis , Breeding , Case-Control Studies , Dog Diseases/diagnosis , Dogs , Female , Heart Valve Diseases/blood , Heart Valve Diseases/diagnosis , Male , Mitral Valve/pathology , Proteomics
7.
Proteomics ; 16(5): 799-815, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26603968

ABSTRACT

Food safety and quality and their associated risks pose a major concern worldwide regarding not only the relative economical losses but also the potential danger to consumer's health. Customer's confidence in the integrity of the food supply could be hampered by inappropriate food safety measures. A lack of measures and reliable assays to evaluate and maintain a good control of food characteristics may affect the food industry economy and shatter consumer confidence. It is imperative to create and to establish fast and reliable analytical methods that allow a good and rapid analysis of food products during the whole food chain. Proteomics can represent a powerful tool to address this issue, due to its proven excellent quantitative and qualitative drawbacks in protein analysis. This review illustrates the applications of proteomics in the past few years in food science focusing on food of animal origin with some brief hints on other types. Aim of this review is to highlight the importance of this science as a valuable tool to assess food quality and safety. Emphasis is also posed in food processing, allergies, and possible contaminants like bacteria, fungi, and other pathogens.


Subject(s)
Allergens/analysis , Food Quality , Food Safety/methods , Food Technology/methods , Proteomics/methods , Animals , Cattle , Humans , Meat/microbiology , Milk , Swine
8.
Proteomics ; 15(4): 813-23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25404104

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is the cause of a chronic enteritis of ruminants (bovine paratuberculosis (PTB)--Johne's disease) that is associated with enormous worldwide economic losses for the animal production. Diagnosis is based on observation of clinical signs, the detection of antibodies in milk or serum, or evaluation of bacterial culture from feces. The limit of these methods is that they are not able to detect the disease in the subclinical stage and are applicable only when the disease is already advanced. For this reason, the main purpose of this study is to use the MAP proteome to detect novel immunoreactive proteins that may be helpful for PTB diagnoses. 2DE and 2D immunoblotting of MAP proteins were performed using sera of control cattle and PTB-infected cattle in order to highlight the specific immunoreactive proteins. Among the assigned identifiers to immunoreactive spots it was found that most of them correspond to surface-located proteins while three of them have never been described before as antigens. The identification of these proteins improves scientific knowledge that could be useful for PTB diagnoses. The sequence of the identified protein can be used for the synthesis of immunoreactive peptides that could be screened for their immunoreaction against bovine sera infected with MAP. All MS data have been deposited in the ProteomeXchange consortium with identifier PXD001159 and DOI 10.6019/PXD001159.


Subject(s)
Bacterial Proteins/analysis , Bacterial Proteins/immunology , Cattle Diseases/microbiology , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/microbiology , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/analysis , Antigens, Bacterial/immunology , Cattle , Electrophoresis, Gel, Two-Dimensional
9.
J Immunol Res ; 2024: 2147912, 2024.
Article in English | MEDLINE | ID: mdl-38628675

ABSTRACT

Ever since its discovery, human immunodeficiency virus type 1 (HIV-1) infection has remained a significant public health concern. The number of HIV-1 seropositive individuals currently stands at 40.1 million, yet definitive treatment for the virus is still unavailable on the market. Vaccination has proven to be a potent tool in combating infectious diseases, as evidenced by its success against other pathogens. However, despite ongoing efforts and research, the unique viral characteristics have prevented the development of an effective anti-HIV-1 vaccine. In this review, we aim to provide an historical overview of the various approaches attempted to create an effective anti-HIV-1 vaccine. Our objective is to explore the reasons why specific methods have failed to induce a protective immune response and to analyze the different modalities of immunogen presentation. This trial is registered with NCT05414786, NCT05471076, NCT04224701, and NCT01937455.


Subject(s)
AIDS Vaccines , HIV Infections , Humans , Vaccination , Clinical Trials as Topic
10.
Pathogens ; 13(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38392894

ABSTRACT

Staphylococcus pseudintermedius is an emergent zoonotic agent associated with multidrug resistance (MDR). This work aimed to describe the antibacterial activity of four essential oils (EOs) and silver nanoparticles (AgNPs) against 15 S. pseudintermedius strains isolated from pyoderma. The four EOs, namely Rosmarinus officinalis (RO), Juniperus communis (GI), Citrus sinensis (AR), and Abies alba (AB), and AgNPs were used alone and in combination to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). All strains were MDR and methicillin-resistant. Among the antibiotic cohort, only rifampicin, doxycycline, and amikacin were effective. EOs' chemical analysis revealed 124 compounds belonging to various chemical classes. Of them, 35 were found in AR, 75 in AB, 77 in GI, and 57 in RO. The monoterpenic fraction prevailed over the sesquiterpenic in all EOs. When EOs were tested alone, AB showed the lowest MIC followed by GI, AR, and RO (with values ranging from 1:128 to 1:2048). MBC increased in the following order: AB, AR, GI, and RO (with values ranging from 1:512 to 1:2048). MIC and MBC values for AgNPs were 10.74 mg/L ± 4.23 and 261.05 mg/L ± 172.74. In conclusion, EOs and AgNPs could limit the use of antibiotics or improve the efficacy of conventional therapies.

11.
G Ital Med Lav Ergon ; 35(4): 330-3, 2013.
Article in Italian | MEDLINE | ID: mdl-24303722

ABSTRACT

The paper describes the sources and characteristics of the particulate matter (PM) generated in pig and poultry facilities. PM origins from the food, the peeling of the skin, loss of fur or feathers, from feces and litter, if present. The PM concentrations measured during the day change due to the management of the litter, the distribution of the food and the cleanliness of the shelters. There are several methods to protect the welfare of animals and stockmen, among which the ventilated ceilings are today the most innovative choice.


Subject(s)
Agricultural Workers' Diseases/etiology , Environmental Pollutants/adverse effects , Livestock , Occupational Exposure/adverse effects , Animals , Dust , Humans , Risk Management
12.
G Ital Med Lav Ergon ; 35(4): 307-9, 2013.
Article in Italian | MEDLINE | ID: mdl-24303718

ABSTRACT

Zoonotic pathologies represent diseases that can be transmittable from animals to humans and vice versa. In most cases zoonotic agents are bacteria or viruses and represent a huge problem for health. Zoonosis could represent easily solvable diseases such as simple infections or even deathly such as prion infections. They could be directly transmittable as tuberculosis or brucellosis or indirectly transmittable through vectors as biological fluids or foods from animal production. The increasing production and the globalization of animal food production have caused the spread of zoonosis worldwide turning this topic into a global problem. It is necessary to enforce the actual scientific collaboration between all countries in order to counteract the spread of these pathologies. About this topic WHO, FAO and OIE took part to the world project "one health" highlighting as most important topics the research on Rabies virus, influenza virus and on antibiotic resistance. In particular antibiotic resistance represents one of the most important topics of the last decade due to the inappropriate use of antibiotics, from animal production to human health. This last topic represents a serious problem for health system worldwide. This paper is mainly based on zoonoses such as avian flu, BSE and brucellosis and will describe the strategies used to limit their expansion.


Subject(s)
Zoonoses/prevention & control , Animals , Humans , Primary Prevention , Zoonoses/epidemiology
13.
Vet Immunol Immunopathol ; 257: 110548, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36736103

ABSTRACT

African Swine Fever (ASF) is an acute hemorrhagic fever affecting suids with high mortality and morbidity rate. The causal agent of ASF, the African Swine Fever Virus (ASFV), is an icosahedral virus of 200 nm diameter, composed of an outer envelope layer of host derivation and a linear 170-190 kb long dsDNA molecule. As of today, no efficient therapeutic intervention nor prophylactic measures exist to fight ASFV diffusion, underlining the importance of the early diagnosis and the need for efficient in-field screening of ASF. Recommended guidelines for the diagnosis of ASF are unpracticable in the desirable context of the rapid in-farm screening. In this view, the design of innovative diagnostics based on a panel of multiple ASFV epitopes would amend versatility and the analytical performances of the deliverable, ensuring high quality and accuracy standards worth of implementation in rapid in-field monitoring programs. Pursuing this view, we performed epitope prediction from the major AFSV structural proteins holding the potential to be targeted in innovative rapid diagnostic tests. Selected ASFV structural protein sequences were retrieved from data repositories and their tridimensional structure was computed. Linear and 3D protein structures were subjected to the prediction of the epitope sequences, that are likely to elicit antibody production, by independent bioinformatic tools, providing a list of candidate biomarkers whose batch employment held the potential suitability for the unbiased rapid in-field diagnosis and, in turn, might be implemented in screening programs, crowing the current monitoring and control campaigns that are currently running worldwide.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , Swine , Animals , Amino Acid Sequence , Viral Proteins/metabolism , Epitopes
14.
Antibiotics (Basel) ; 12(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37508321

ABSTRACT

Staphylococcus aureus is considered one of the most widespread bacterial pathogens for both animals and humans, being the causative agent of various diseases like food poisoning, respiratory tract infections, nosocomial bacteremia, and surgical site and cardiovascular infections in humans, as well as clinical and subclinical mastitis, dermatitis, and suppurative infections in animals. Thanks to their genetic flexibility, several virulent and drug-resistant strains have evolved mainly due to horizontal gene transfer and insurgence of point mutations. Infections caused by the colonization of such strains are particularly problematic due to frequently occurring antibiotic resistance, particulary methicillin-resistant S. aureus (MRSA), and are characterized by increased mortality, morbidity, and hospitalization rates compared to those caused by methicillin-sensitive S. aureus (MSSA). S. aureus infections in humans and animals are a prime example of a disease that may be managed by a One Health strategy. In fact, S. aureus is a significant target for control efforts due to its zoonotic potential, the frequency of its illnesses in both humans and animals, and the threat posed by S. aureus antibiotic resistance globally. The results of an epidemiological analysis on a worldwide public database (NCBI Pathogen Detection Isolate Browser; NPDIB) of 35,026 S. aureus isolates were described. We considered the diffusion of antibiotic resistance genes (ARGs), in both human and animal setting, and the results may be considered alarming. The result of this study allowed us to identify the presence of clusters with specific ARG patterns, and that these clusters are associated with different sources of isolation (e.g., human, non-human).

15.
Antibiotics (Basel) ; 12(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38136688

ABSTRACT

Staphylococcus aureus are commensal bacteria that are found in food, water, and a variety of settings in addition to being present on the skin and mucosae of both humans and animals. They are regarded as a significant pathogen as well, with a high morbidity that can cause a variety of illnesses. The Centers for Disease Control and Prevention (CDC) has listed them among the most virulent and resistant to antibiotics bacterial pathogens, along with Escherichia coli, Staphylococcus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterococcus faecalis, and Enterococcus faecium. Additionally, S. aureus is a part of the global threat posed by the existence of antimicrobial resistance (AMR). Using 26,430 S. aureus isolates from a global public database (NPDIB; NCBI Pathogen Detection Isolate Browser), epidemiological research was conducted. The results corroborate the evidence of notable variations in isolate distribution and ARG (Antimicrobial Resistance Gene) clusters between isolate sources and geographic origins. Furthermore, a link between the isolates from human and animal populations is suggested by the ARG cluster patterns. This result and the widespread dissemination of the pathogens among animal and human populations highlight how crucial it is to learn more about the epidemiology of these antibiotic-resistance-related infections using a One Health approach.

16.
Nutrients ; 14(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36145125

ABSTRACT

Extra virgin olive oil (EVOO) is a mainstay of the Mediterranean diet with its excellent balance of fats and antioxidant bioactive compounds. Both the phenolic and lipid fractions of EVOO contain a variety of antioxidant and anticancer substances which might protect from the development of colorectal cancer (CRC). The function of the intestinal microbiome is essential for the integrity of the intestinal epithelium, being protective against pathogens and maintaining immunity. Indeed, dysbiosis of the microbiota alters the physiological functions of the organ, leading to the onset of different diseases including CRC. It is known that some factors, including diet, could deeply influence and modulate the colon microenvironment. Although coming from animal models, there is increasing evidence that a diet rich in EVOO is linked to a significant reduction in the diversity of gut microbiome (GM), causing a switch from predominant bacteria to a more protective group of bacteria. The potential beneficial effect of the EVOO compounds in the carcinogenesis of CRC is only partially known and further trials are needed in order to clarify this issue. With this narrative review, we aim at discussing the available evidence on the effect of olive oil consumption on GM in the prevention of CRC.


Subject(s)
Colorectal Neoplasms , Diet, Mediterranean , Gastrointestinal Microbiome , Animals , Antioxidants/pharmacology , Colorectal Neoplasms/prevention & control , Olive Oil/pharmacology , Tumor Microenvironment
17.
Pathogens ; 10(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069705

ABSTRACT

The virus responsible for the pandemic that has affected 152 countries worldwide is a new strain of coronavirus (CoV), which belongs to a family of viruses widespread in many animal species, including birds, and mammals including humans. Indeed, CoVs are known in veterinary medicine affecting several species, and causing respiratory and/or enteric, systemic diseases and reproductive disease in poultry. Animal diseases caused by CoV may be considered from the following different perspectives: livestock and poultry CoVs cause mainly "population disease"; while in companion animals they are a source of mainly "individual/single subject disease". Therefore, respiratory CoV diseases in high-density, large populations of livestock or poultry may be a suitable example for the current SARS-CoV-2/COVID-19 pandemic. In this review we describe some strategies applied in veterinary medicine to control CoV and discuss if they may help to develop practical and useful strategies to control the SARS-CoV-2/COVID-19 pandemic.

18.
Pathogens ; 10(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34832511

ABSTRACT

The One Health approach emphasizes the importance of antimicrobial resistance (AMR) as a major concern both in public health and in food animal production systems. As a general classification, E. coli can be distinguished based on the ability to cause infection of the gastrointestinal system (IPEC) or outside of it (ExPEC). Among the different pathogens, E. coli are becoming of great importance, and it has been suggested that ExPEC may harbor resistance genes that may be transferred to pathogenic or opportunistic bacteria. ExPEC strains are versatile bacteria that can cause urinary tract, bloodstream, prostate, and other infections at non-intestinal sites. In this context of rapidly increasing multidrug-resistance worldwide and a diminishingly effective antimicrobial arsenal to tackle resistant strains. ExPEC infections are now a serious public health threat worldwide. However, the clinical and economic impact of these infections and their optimal management are challenging, and consequently, there is an increasing awareness of the importance of ExPECs amongst healthcare professionals and the general public alike. This review aims to describe pathotype characteristics of ExPEC to increase our knowledge of these bacteria and, consequently, to increase our chances to control them and reduce the risk for AMR, following a One Health approach.

19.
One Health ; 13: 100253, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33997237

ABSTRACT

Brucellosis caused by Brucella melitensis is a zoonosis frequently reported in the Mediterranean and Middle-East regions and responsible for important economic losses and reduced animal welfare. To date, current strategies applied to control or eradicate the disease relies on diagnostic tests that suffer from limited specificity in non-vaccinated animals; while prophylactic measures, when applied, use a live attenuated bacterial strain characterized by residual virulence on adult pregnant animals and difficulties in distinguishing vaccinated from infected animals. To overcome these issues, studies are desired to elucidate the bacterial biology and the pathogenetic mechanisms of both the vaccinal strain and the pathogenic strains. Proteomics has a potential in tackling issues of One-Health concern; here, we employed label-free shotgun proteomics to investigate the protein repertoire of the vaccinal strain B. melitensis Rev.1 and compare it with the proteome of the Brucella melitensis 16 M, a reference strain representative of B. melitensis field strains. Comparative proteomics profiling underlines common and diverging traits between the two strains. Common features suggest the potential biochemical routes responsible for the residual virulence of the vaccinal strain, whilst the diverging traits are suggestive biochemical signatures to be further investigated to provide an optimized diagnostic capable of discriminating the vaccinated from infected animals. The data presented in this study are openly available in PRIDE data repository at https://www.ebi.ac.uk/pride/, reference number PXD022472.

20.
Animals (Basel) ; 11(4)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807139

ABSTRACT

Antimicrobial resistance (AMR) represents one of the most critical challenges that humanity will face in the following years. In this context, a "One Health" approach with an integrated multidisciplinary effort involving humans, animals and their surrounding environment is needed to tackle the spread of AMR. One of the most common ways for bacteria to live is to adhere to surfaces and form biofilms. Staphylococcus aureus (S. aureus) can form biofilm on most surfaces and in a wide heterogeneity of environmental conditions. The biofilm guarantees the survival of the S. aureus in harsh environmental conditions and represents an issue for the food industry and animal production. The identification and characterization of biofilm-related proteins may provide interesting insights into biofilm formation mechanisms in S. aureus. In this regard, the aims of this study were: (i) to use proteomics to compare proteomes of S. aureus growing in planktonic and biofilm forms in order to investigate the common features of biofilm formation properties of different strains; (ii) to identify specific biofilm mechanisms that may be involved in AMR. The proteomic analysis showed 14 differentially expressed proteins among biofilm and planktonic forms of S. aureus. Moreover, three proteins, such as alcohol dehydrogenase, ATP-dependent 6-phosphofructokinase, and fructose-bisphosphate aldolase, were only differentially expressed in strains classified as high biofilm producers. Differentially regulated catabolites metabolisms and the switch to lower oxygen-related metabolisms were related to the sessile conformation analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL