Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Toxicol Pathol ; 51(7-8): 465-469, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38281143

ABSTRACT

This case study session of the hepatobiliary system was held during the 42nd Annual Society of Toxicologic Pathology Symposium in Summerlin, Nevada. The case studies highlighed potential hepatic and biliary toxicity liabilities. This article comprises several of the case studies that were presented during the session which included copper-associated hepatitis in a dog, sinusoidal obstruction syndrome in non-human primates, hepatic cytoplasmic alteration in mice and rats, and Kupffer cell hyperplasia/granulomatous inflammation in rats. Presenters, when applicable, provided case signalment, anatomic/clinical pathology data, and diagnoses and discussed potential pathogeneses.


Subject(s)
Liver , Pathology, Clinical , Rats , Mice , Animals , Dogs , Hyperplasia
2.
Toxicol Pathol ; 51(7-8): 437-464, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38445604

ABSTRACT

The 2023 annual Division of Translational Toxicology (DTT) Satellite Symposium, entitled "Pathology Potpourri," was held in Summerlin, Nevada, at the Society of Toxicologic Pathology's 41st annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and topics covered during the symposium included induced and spontaneous neoplastic and nonneoplastic lesions in the mouse liver, infectious and proliferative lesions in nonhuman primates, interesting presentations of mononuclear cell infiltrates in various animal models and a complex oral tumor in a rat.


Subject(s)
Proteomics , Toxicology , Mice , Rats , Animals , Voting
3.
Viral Immunol ; 37(2): 89-100, 2024 03.
Article in English | MEDLINE | ID: mdl-38301195

ABSTRACT

Herpesvirus of turkey (HVT) increases activation of T cells in 1-day-old chickens when administered in ovo. This study evaluated whether adding cytosine-guanosine oligodeoxynucleotides (CpG ODNs) to the HVT vaccine could enhance the adjuvant effect of HVT. We used a CpG ODN dose of 10 µg per egg. The experimental groups were (1) diluent-only control (sham), (2) HVT, (3) HVT+CpG ODN, (4) HVT+non-CpG ODN, (5) CpG ODN, and (6) non-CpG ODN control. Cellular response evaluation included measuring the frequencies of macrophages (KUL01+MHC-II+), gamma delta T cells (γδTCR+MHC-II+), CD4+, and CD8+ T cell subsets, including double-positive (DP) cells. In addition, CD4+ and CD8+ T cell activation was evaluated by measuring the cellular expression of major histocompatibility complex class II (MHC-II), CD44 or CD28 costimulatory molecules. An adjuvant effect was considered when HVT+CpG ODN, but not HVT+non CpG ODN, or CpG ODN, or non-CpG ODN, induced significantly increased effects on any of the immune parameters examined when compared with HVT. The findings showed that (1) HVT vaccination induced significantly higher frequencies of γδ+MHC-II+ and CD4+CD28+ T cells when compared with sham chickens. Frequencies of DP and CD4+CD28+ T cells in HVT-administered birds were significantly higher than those observed in the non-CpG ODN group. (2) Groups receiving HVT+CpG ODN or CpG ODN alone were found to have significantly increased frequencies of activated CD4+ and CD8+ T cells, when compared with HVT. Our results show that CpG ODN administration in ovo with or without HVT significantly increased frequencies of activated CD4+ and CD8+ T cells.


Subject(s)
Herpesviridae , Vaccines , Animals , Chickens , CD8-Positive T-Lymphocytes , CD28 Antigens , Adjuvants, Immunologic , Oligodeoxyribonucleotides , Meat
4.
J Zoo Wildl Med ; 44(2): 470-4, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23805569

ABSTRACT

An adult yellow stingray (Urobatis jamaicensis) from a touch-tank exhibit developed a large abscess on the dorsal aspect of the calvarium and swollen soft tissue surrounding the left spiracle. A large amount of fluid exudate was drained from the abscess. Mycobacterium chelonae was diagnosed by cytology of the exudate and by polymerase chain reaction and sequencing. The animal was euthanized and disseminated mycobacteriosis was confirmed with histology.


Subject(s)
Fish Diseases/microbiology , Mycobacterium Infections, Nontuberculous/veterinary , Mycobacterium chelonae/isolation & purification , Skates, Fish , Animals , Female , Fish Diseases/pathology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/pathology
5.
Vaccine ; 41(15): 2514-2523, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36894394

ABSTRACT

In ovo vaccination with herpesvirus of turkey (HVT) hastens immunocompetence in chickens and the recommended dose (RD) of 6080 plaque-forming-units (PFU) offers the most optimal effects. In previous studies conducted in egg-type chickens, in ovo vaccination with HVT enhanced lymphoproliferation, wing-web thickness with phytohemagglutinin-L (PHA-L), and increased spleen and lung interferon-gamma(IFN-γ) andToll-like receptor 3 (TLR3) transcripts. Here, we evaluated the cellular mechanisms by which HVT-RD can hasten immunocompetence in one-day-old meat-type chickens, and also determined if HVT adjuvantation with a TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), could enhance vaccine-induced responses and provide dose-sparing effects. Compared to sham-inoculated chickens, HVT-RD significantly increased transcription of splenic TLR3 and IFN γ receptor 2 (R2), and lung IFN γ R2, while the splenic IL-13 transcription was found decreased. Additionally, these birds showed increased wing-web thickness following PHA-L inoculation. The thickness was due to an innate inflammatory cell population, CD3+ T cells, and edema. In another experiment, HVT-1/2 (3040 PFU) supplemented with 50 µg poly(I:C) [HVT-1/2 + poly(I:C)] was administered in ovo and immune responses were compared with those produced by HVT-RD, HVT-1/2, 50 µg poly(I:C), and sham-inoculated. Immunophenotyping of splenocytes showed HVT-RD induced a significantly higher frequency of CD4+, CD4+MHC-II+, CD8+CD44+, and CD4+CD28+ T cells compared to sham-inoculated chickens, and CD8+MHC-II+, CD4+CD8+, CD4+CD8+CD28+, and CD4+CD8+CD44+ T cells compared to all groups. Treatment groups, except HVT-1/2 + poly(I:C), had significantly higher frequencies of γδ T cells and all groups induced significantly higher frequencies of activated monocytes/macrophages, compared to sham-inoculated chickens. Poly(I:C)-induced dose-sparing effect was only observed in the frequency of activated monocytes/macrophages. No differences in the humoral responses were observed. Collectively, HVT-RD downregulated IL-13 transcripts (Th2 immune response) and had strong immunopotentiation effects on innate immune responses and the activation of T cells. However addition of poly(I:C) offered a minimal adjuvant/dose-sparing effect.


Subject(s)
Chickens , Marek Disease , Animals , Poly I-C/pharmacology , Toll-Like Receptor 3 , Interleukin-13 , CD28 Antigens , Herpesvirus 1, Meleagrid , Interferon-gamma , Vaccination/veterinary
6.
JCI Insight ; 8(11)2023 06 08.
Article in English | MEDLINE | ID: mdl-37159271

ABSTRACT

Respiratory syncytial virus (RSV) infection causes significant morbidity and mortality in infants, immunocompromised individuals, and older individuals. There is an urgent need for effective antivirals and vaccines for high-risk individuals. We used 2 complementary in vivo models to analyze RSV-associated human lung pathology and human immune correlates of protection. RSV infection resulted in widespread human lung epithelial damage, a proinflammatory innate immune response, and elicited a natural adaptive human immune response that conferred protective immunity. We demonstrated a key role for human T cells in controlling RSV infection. Specifically, primed human CD8+ T cells or CD4+ T cells effectively and independently control RSV replication in human lung tissue in the absence of an RSV-specific antibody response. These preclinical data support the development of RSV vaccines, which also elicit effective T cell responses to improve RSV vaccine efficacy.


Subject(s)
Respiratory Syncytial Virus Infections , Infant , Humans , Respiratory Syncytial Virus Infections/prevention & control , Lung/pathology , Antibodies, Viral , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes
7.
Vaccine ; 38(31): 4837-4845, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32505441

ABSTRACT

In ovo vaccination with herpesvirus of turkey (HVT) or recombinant HVT (rHVT) is commonly used in meat-type chickens. Previous studies showed that in ovo vaccination with HVT enhances innate, cellular, and humoral immune responses in egg-type chicken embryos. This study evaluated if in ovo vaccination with HVT hastens immunocompetence of commercial meat-type chickens and optimized vaccination variables (dose and strain of HVT) to accelerate immunocompetence. A conventional HVT vaccine was given at recommended dose (RD), HVT-RD = 6080 plaque forming units (PFU), double-dose (2x), half-dose (1/2), or quarter-dose (1/4). Two rHVTs were given at RD: rHVT-A = 7380 PFU, rHVT-B = 8993 PFU. Most, if not all, treatments enhanced splenic lymphoproliferation with Concanavalin A and increased the percentage of granulocytes at day of age. Dose had an effect and HVT-RD was ideal. An increase of wing-web thickness after exposure to phytohemagglutinin-L was only detected after vaccination with HVT-RD. Furthermore, compared to sham-inoculated chickens, chickens in the HVT-RD had an increased percentage of CD3+ T cells and CD4+ T-helper cells, and increased expression of major histocompatibility complex (MHC)-II on most cell subsets (CD45+ cells, non-T leukocytes, T cells and the CD8+ and T cell receptor γδ T-cell subsets). Other treatments (HVT-1/2 and rHVT-B) share some of these features but differences were not as remarkable as in the HVT-RD group. Expression of MHC-I was reduced, compared to sham-inoculated chickens, in most of the cell phenotypes evaluated in the HVT-RD, HVT-2x and rHVT-A groups, while no effect was observed in other treatments. The effect of in ovo HVT on humoral immune responses (antibody responses to keyhole limpet hemocyanin and to a live infectious bronchitis/Newcastle disease vaccine) was minimal. Our study demonstrates in ovo vaccination with HVT in meat-type chickens can accelerate innate and adaptive immunity and we could optimize such effect by modifying the vaccine dose.


Subject(s)
Marek Disease , Poultry Diseases , Viral Vaccines , Animals , Chick Embryo , Chickens , Herpesvirus 1, Meleagrid , Meat , Poultry Diseases/prevention & control , Vaccination
8.
Nat Biotechnol ; 37(10): 1163-1173, 2019 10.
Article in English | MEDLINE | ID: mdl-31451733

ABSTRACT

A major limitation of current humanized mouse models is that they primarily enable the analysis of human-specific pathogens that infect hematopoietic cells. However, most human pathogens target other cell types, including epithelial, endothelial and mesenchymal cells. Here, we show that implantation of human lung tissue, which contains up to 40 cell types, including nonhematopoietic cells, into immunodeficient mice (lung-only mice) resulted in the development of a highly vascularized lung implant. We demonstrate that emerging and clinically relevant human pathogens such as Middle East respiratory syndrome coronavirus, Zika virus, respiratory syncytial virus and cytomegalovirus replicate in vivo in these lung implants. When incorporated into bone marrow/liver/thymus humanized mice, lung implants are repopulated with autologous human hematopoietic cells. We show robust antigen-specific humoral and T-cell responses following cytomegalovirus infection that control virus replication. Lung-only mice and bone marrow/liver/thymus-lung humanized mice substantially increase the number of human pathogens that can be studied in vivo, facilitating the in vivo testing of therapeutics.


Subject(s)
Coronavirus Infections/virology , Disease Models, Animal , Lung/physiology , Zika Virus Infection/virology , Animals , Antibodies, Viral , Antigen-Presenting Cells , Coronavirus Infections/immunology , Cytokines/genetics , Cytokines/metabolism , Cytomegalovirus/physiology , Female , Gene Expression Regulation , Humans , Immunohistochemistry , Male , Mice , Mice, SCID , Middle East Respiratory Syndrome Coronavirus/immunology , Tropism/immunology , Virus Replication , Zika Virus/immunology , Zika Virus Infection/immunology
SELECTION OF CITATIONS
SEARCH DETAIL