Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 346
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 597(7874): 92-96, 2021 09.
Article in English | MEDLINE | ID: mdl-34433968

ABSTRACT

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Heparan Sulfate Proteoglycans/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Animals , B-Cell Maturation Antigen/metabolism , Binding Sites , Cardiovascular Diseases/blood , Cardiovascular Diseases/mortality , Female , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding , Transmembrane Activator and CAML Interactor Protein/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/blood , Tumor Necrosis Factor Ligand Superfamily Member 13/deficiency
2.
Annu Rev Nutr ; 44(1): 179-204, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38635875

ABSTRACT

Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.


Subject(s)
Lipoproteins, VLDL , Triglycerides , Animals , Humans , Apolipoproteins B/metabolism , Atherosclerosis/metabolism , Chylomicrons/metabolism , Hypertriglyceridemia/metabolism , Lipoproteins/metabolism , Lipoproteins, VLDL/metabolism , Triglycerides/metabolism
3.
FASEB J ; 38(14): e23815, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38989587

ABSTRACT

To investigate how the fatty acid composition of brain phospholipids influences brain-specific processes, we leveraged the AdipoR2 (adiponectin receptor 2) knockout mouse model in which the brain is enlarged, and cellular membranes are excessively rich in saturated fatty acids. Lipidomics analysis of brains at 2, 7, and 18 months of age showed that phosphatidylcholines, which make up about two-thirds of all cerebrum membrane lipids, contain a gross excess of saturated fatty acids in AdipoR2 knockout mice, and that this is mostly attributed to an excess palmitic acid (C16:0) at the expense of oleic acid (C18:1), consistent with a defect in fatty acid desaturation and elongation in the mutant. Specifically, there was a ~12% increase in the overall saturated fatty acid content within phosphatidylcholines and a ~30% increase in phosphatidylcholines containing two palmitic acids. Phosphatidylethanolamines, sphingomyelins, ceramides, lactosylceramides, and dihydroceramides also showed an excess of saturated fatty acids in the AdipoR2 knockout mice while nervonic acid (C24:1) was enriched at the expense of shorter saturated fatty acids in glyceroceramides. Similar defects were found in the cerebellum and myelin sheaths. Histology showed that cell density is lower in the cerebrum of AdipoR2 knockout mice, but electron microscopy did not detect reproducible defects in the ultrastructure of cerebrum neurons, though proteomics analysis showed an enrichment of electron transport chain proteins in the cerebellum. Behavioral tests showed that older (33 weeks old) AdipoR2 knockout mice are hyperactive and anxious compared to control mice of a similar age. Also, in contrast to control mice, the AdipoR2 knockout mice do not gain weight in old age but do have normal lifespans. We conclude that an excess fatty acid saturation in brain phospholipids is accompanied by hyperactivity but seems otherwise well tolerated.


Subject(s)
Aging , Brain , Fatty Acids , Mice, Knockout , Receptors, Adiponectin , Animals , Mice , Brain/metabolism , Fatty Acids/metabolism , Aging/metabolism , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Male , Mice, Inbred C57BL , Phosphatidylcholines/metabolism , Phospholipids/metabolism
4.
Arterioscler Thromb Vasc Biol ; 44(5): 1086-1097, 2024 05.
Article in English | MEDLINE | ID: mdl-38385290

ABSTRACT

BACKGROUND: ANGPTL3 (angiopoietin-like protein 3) is a circulating protein with a key role in maintaining lipoprotein homeostasis. A monoclonal antibody against ANGPTL3 is an approved and well-tolerated treatment to reduce lipoproteins in familial hypercholesterolemia homozygotes. However, the reduction of hepatic ANGPTL3 synthesis using an antisense oligonucleotide unexpectedly resulted in a dose-dependent increase in liver lipid content and circulating transaminases, resulting in the termination of the clinical trial. Meanwhile, the use of silencing RNAs remains an area of active investigation. Our study sought to investigate whether intracellular downregulation of ANGPTL3 may lead to a primary increase in neutral lipids within the hepatocyte. METHODS: We downregulated ANGPTL3 by silencing RNA in primary human hepatocytes 3-dimensional spheroids, HepG2/LX-2 3-dimensional spheroids, and in HepG2, Hep3B2, and Huh7 cultured in 2 dimensions. RESULTS: ANGPTL3 downregulation increased neutral lipids in all models investigated. Interestingly, ANGPTL3 induced lower intracellular deiodinase type 1 protein levels resulting in a reduction in beta-oxidation and causing an increase in triglycerides stored in lipid droplets. CONCLUSIONS: In conclusion, intracellular ANGPTL3 downregulation by silencing RNA led to an increase in triglycerides content due to a reduction in energy substrate utilization resembling a primary intracellular hepatocyte hypothyroidism.


Subject(s)
Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins , Down-Regulation , Energy Metabolism , Hepatocytes , RNA Interference , Triglycerides , Humans , Angiopoietin-Like Protein 3/genetics , Angiopoietin-Like Protein 3/metabolism , Angiopoietin-like Proteins/metabolism , Angiopoietin-like Proteins/genetics , Angiopoietins/metabolism , Angiopoietins/genetics , Energy Metabolism/genetics , Hep G2 Cells , Hepatocytes/metabolism , Lipid Metabolism , Transfection , Triglycerides/metabolism
5.
J Biol Chem ; 299(6): 104799, 2023 06.
Article in English | MEDLINE | ID: mdl-37164154

ABSTRACT

The human AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 are multipass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labeled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified coimmunoprecipitated proteins using mass spectrometry. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely, with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Membrane , Fatty Acids , Membrane Fluidity , Receptors, Adiponectin , Animals , Humans , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Membrane/metabolism , Fatty Acids/metabolism , HEK293 Cells , Membrane Fluidity/physiology , Phospholipids/metabolism , Receptors, Adiponectin/metabolism , Protein Binding
6.
Circulation ; 147(25): 1872-1886, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37154040

ABSTRACT

BACKGROUND: The goal of this work was to investigate trends (2001-2019) for cardiovascular events and cardiometabolic risk factor levels in individuals with type 2 diabetes (T2D) and matched control subjects. METHODS: This study included 679 072 individuals with T2D from the Swedish National Diabetes Register and 2 643 800 matched control subjects. Incident outcomes comprised coronary artery disease, acute myocardial infarction, cerebrovascular disease, and heart failure (HF). Trends in time to first event for each outcome were analyzed with Cox regression and standardized incidence rates. In the group with T2D, Cox regression was also used to assess risk factor levels beyond target and outcomes, as well as the relative importance of each risk factor to each model. RESULTS: Among individuals with T2D, incidence rates per 10 000 person-years in 2001 and 2019 were as follows: acute myocardial infarction, 73.9 (95% CI, 65.4-86.8) and 41.0 (95% CI, 39.5-42.6); coronary artery disease, 205.1 (95% CI, 186.8-227.5) and 80.2 (95% CI, 78.2-82.3); cerebrovascular disease, 83.9 (95% CI, 73.6-98.5) and 46.2 (95% CI, 44.9-47.6); and HF, 98.3 (95% CI, 89.4-112.0) and 75.9 (95% CI, 74.4-77.5). The incidence for HF plateaued around 2013, a trend that then persisted. In individuals with T2D, glycated hemoglobin, systolic blood pressure, estimated glomerular filtration rate, and lipids were independently associated with outcomes. Body mass index alone potentially explained >30% of HF risk in T2D. For those with T2D with no risk factor beyond target, there was no excess cardiovascular risk compared with control subjects except for HF, with increased hazard with T2D even when no risk factor was above target (hazard ratio, 1.50 [95% CI, 1.35-1.67]). Risk for coronary artery disease and cerebrovascular disease increased in a stepwise fashion for each risk factor not within target. Glycated hemoglobin was most prognostically important for incident atherosclerotic events, as was body mass index for incident of HF. CONCLUSIONS: Risk and rates for atherosclerotic complications and HF are generally decreasing among individuals with T2D, although HF incidence has notably plateaued in recent years. Modifiable risk factors within target levels were associated with lower risks for outcomes. This was particularly notable for systolic blood pressure and glycated hemoglobin for atherosclerotic outcomes and body mass index for heart failure.


Subject(s)
Atherosclerosis , Cerebrovascular Disorders , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Heart Failure , Myocardial Infarction , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Cohort Studies , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Coronary Artery Disease/complications , Glycated Hemoglobin , Sweden/epidemiology , Risk Factors , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/etiology , Myocardial Infarction/epidemiology , Myocardial Infarction/complications , Cerebrovascular Disorders/diagnosis , Cerebrovascular Disorders/epidemiology , Cerebrovascular Disorders/complications , Atherosclerosis/complications
7.
Curr Opin Cardiol ; 39(6): 503-510, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39360655

ABSTRACT

PURPOSE OF REVIEW: Lipoprotein(a) has been identified as a causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis. However, as reviewed here, there is ongoing debate as to the key pathogenic features of Lp(a) particles and the degree of Lp(a) atherogenicity relative to low-density lipoprotein (LDL). RECENT FINDINGS: Genetic analyses have revealed that Lp(a) on a per-particle basis is markedly (about six-fold) more atherogenic than LDL. Oxidized phospholipids carried on Lp(a) have been found to have substantial pro-inflammatory properties triggering pathways that may contribute to atherogenesis. Whether the strength of association of Lp(a) with ASCVD risk is dependent on inflammatory status is a matter of current debate and is critical to implementing intervention strategies. Contradictory reports continue to appear, but most recent studies in large cohorts indicate that the relationship of Lp(a) to risk is independent of C-reactive protein level. SUMMARY: Lp(a) is a highly atherogenic lipoprotein and a viable target for intervention in a significant proportion of the general population. Better understanding the basis of its enhanced atherogenicity is important for risk assessment and interpreting intervention trials.


Subject(s)
Atherosclerosis , Lipoprotein(a) , Humans , Lipoprotein(a)/blood , Lipoprotein(a)/metabolism , Risk Factors , Aortic Valve Stenosis/physiopathology
8.
Bioorg Chem ; 147: 107425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714117

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) comprises a broad range of liver disease including hepatocellular carcinoma (HCC) with is no FDA-approved drug. Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP generation in liver presenting a potential target for the treatment of NAFLD. Based on our recent finding of JNK-5A's effectiveness in inhibiting PKLR expression through a drug repositioning pipeline, this study aims to improve its efficacy further. We synthesized a series of JNK-5A analogues with targeted modifications, guided by molecular docking studies. These compounds were evaluated for their activities on PKL expression, cell viability, triacylglyceride (TAG) levels, and the expressions of steatosis-related proteins in the human HepG2 cell line. Subsequently, the efficacy of these compounds was assessed in reducing TAG level and toxicity. Compounds 40 (SET-151) and 41 (SET-152) proved to be the most efficient in reducing TAG levels (11.51 ± 0.90 % and 10.77 ± 0.67 %) and demonstrated lower toxicity (61.60 ± 5.00 % and 43.87 ± 1.42 %) in HepG2 cells. Additionally, all synthesized compounds were evaluated for their anti-cancer properties revealing that compound 74 (SET-171) exhibited the highest toxicity in cell viability with IC50 values of 8.82 µM and 2.97 µM in HepG2 and Huh7 cell lines, respectively. To summarize, compounds 40 (SET-151) and 41 (SET-152) show potential for treating NAFLD, while compound 74 (SET-171) holds potential for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Drug Design , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Protein Kinase Inhibitors , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/drug therapy , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Hep G2 Cells , Molecular Structure , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/metabolism , Molecular Docking Simulation , Dose-Response Relationship, Drug , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry
9.
Eur Heart J ; 44(39): 4186-4195, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37358553

ABSTRACT

AIMS: The strength of the relationship of triglyceride-rich lipoproteins (TRL) with risk of coronary heart disease (CHD) compared with low-density lipoprotein (LDL) is yet to be resolved. METHODS AND RESULTS: Single-nucleotide polymorphisms (SNPs) associated with TRL/remnant cholesterol (TRL/remnant-C) and LDL cholesterol (LDL-C) were identified in the UK Biobank population. In a multivariable Mendelian randomization analysis, TRL/remnant-C was strongly and independently associated with CHD in a model adjusted for apolipoprotein B (apoB). Likewise, in a multivariable model, TRL/remnant-C and LDL-C also exhibited independent associations with CHD with odds ratios per 1 mmol/L higher cholesterol of 2.59 [95% confidence interval (CI): 1.99-3.36] and 1.37 [95% CI: 1.27-1.48], respectively. To examine the per-particle atherogenicity of TRL/remnants and LDL, SNPs were categorized into two clusters with differing effects on TRL/remnant-C and LDL-C. Cluster 1 contained SNPs in genes related to receptor-mediated lipoprotein removal that affected LDL-C more than TRL/remnant-C, whereas cluster 2 contained SNPs in genes related to lipolysis that had a much greater effect on TRL/remnant-C. The CHD odds ratio per standard deviation (Sd) higher apoB for cluster 2 (with the higher TRL/remnant to LDL ratio) was 1.76 (95% CI: 1.58-1.96), which was significantly greater than the CHD odds ratio per Sd higher apoB in cluster 1 [1.33 (95% CI: 1.26-1.40)]. A concordant result was obtained by using polygenic scores for each cluster to relate apoB to CHD risk. CONCLUSION: Distinct SNP clusters appear to impact differentially on remnant particles and LDL. Our findings are consistent with TRL/remnants having a substantially greater atherogenicity per particle than LDL.


Subject(s)
Biological Specimen Banks , Coronary Disease , Humans , Cholesterol, LDL , Triglycerides , Lipoproteins/genetics , Cholesterol , Apolipoproteins B/genetics , Coronary Disease/epidemiology , Coronary Disease/genetics , United Kingdom/epidemiology
10.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063228

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) presents a significant global health challenge, characterized by the accumulation of liver fat and impacting a considerable portion of the worldwide population. Despite its widespread occurrence, effective treatments for MAFLD are limited. The liver-specific isoform of pyruvate kinase (PKL) has been identified as a promising target for developing MAFLD therapies. Urolithin C, an allosteric inhibitor of PKL, has shown potential in preliminary studies. Expanding upon this groundwork, our study delved into delineating the structure-activity relationship of urolithin C via the synthesis of sulfone-based urolithin analogs. Our results highlight that incorporating a sulfone moiety leads to substantial PKL inhibition, with additional catechol moieties further enhancing this effect. Despite modest improvements in liver cell lines, there was a significant increase in inhibition observed in HepG2 cell lysates. Specifically, compounds 15d, 9d, 15e, 18a, 12d, and 15a displayed promising IC50 values ranging from 4.3 µM to 18.7 µM. Notably, compound 15e not only demonstrated a decrease in PKL activity and triacylglycerol (TAG) content but also showed efficient cellular uptake. These findings position compound 15e as a promising candidate for pharmacological MAFLD treatment, warranting further research and studies.


Subject(s)
Liver , Pyruvate Kinase , Sulfones , Humans , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/metabolism , Sulfones/chemistry , Sulfones/pharmacology , Sulfones/chemical synthesis , Hep G2 Cells , Liver/metabolism , Structure-Activity Relationship , Allosteric Regulation/drug effects , Drug Design , Coumarins/chemistry , Coumarins/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
11.
Curr Opin Lipidol ; 34(4): 180-188, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37431304

ABSTRACT

PURPOSE OF REVIEW: Sphingolipids are structurally diverse membrane lipids localized in lipid bilayers. Sphingolipids are not only important structural components of cellular membranes, but they are also important regulators of cellular trafficking and signal transduction and are implicated in several diseases. Here, we review the latest insights into sphingolipids and their role in cardiac function and cardiometabolic disease. RECENT FINDINGS: The underlying mechanisms linking sphingolipids to cardiac dysfunction are still not fully clarified. Sphingolipids, and in particular ceramides, have emerged as important players in lipotoxicity, mediating inflammation, impaired insulin signalling and apoptosis. In addition, recent findings highlight the importance of glycosphingolipid homeostasis in cardiomyocyte membranes, where they are required to maintain ß-adrenergic signalling and contractile capacity to preserve normal heart function. Thus, glycosphingolipid homeostasis in cardiac membranes characterizes a novel mechanism linking sphingolipids to cardiac disease. SUMMARY: Modulation of cardiac sphingolipids may represent a promising therapeutic approach. Sustained investigation of the link between sphingolipids and cardiomyocyte function is therefore needed and we hope that this review may inspire researchers to further elucidate the action of these lipids.


Subject(s)
Myocytes, Cardiac , Sphingolipids , Humans , Myotoxicity , Ceramides , Membrane Lipids
12.
Diabetologia ; 66(12): 2307-2319, 2023 12.
Article in English | MEDLINE | ID: mdl-37775612

ABSTRACT

AIMS/HYPOTHESIS: This study explored the hypothesis that significant abnormalities in the metabolism of intestinally derived lipoproteins are present in individuals with type 2 diabetes on statin therapy. These abnormalities may contribute to residual CVD risk. METHODS: To investigate the kinetics of ApoB-48- and ApoB-100-containing lipoproteins, we performed a secondary analysis of 11 overweight/obese individuals with type 2 diabetes who were treated with lifestyle counselling and on a stable dose of metformin who were from an earlier clinical study, and compared these with 11 control participants frequency-matched for age, BMI and sex. Participants in both groups were on a similar statin regimen during the study. Stable isotope tracers were used to determine the kinetics of the following in response to a standard fat-rich meal: (1) apolipoprotein (Apo)B-48 in chylomicrons and VLDL; (2) ApoB-100 in VLDL, intermediate-density lipoprotein (IDL) and LDL; and (3) triglyceride (TG) in VLDL. RESULTS: The fasting lipid profile did not differ significantly between the two groups. Compared with control participants, in individuals with type 2 diabetes, chylomicron TG and ApoB-48 levels exhibited an approximately twofold higher response to the fat-rich meal, and a twofold higher increment was observed in ApoB-48 particles in the VLDL1 and VLDL2 density ranges (all p < 0.05). Again comparing control participants with individuals with type 2 diabetes, in the latter, total ApoB-48 production was 25% higher (556 ± 57 vs 446 ± 57 mg/day; p < 0.001), conversion (fractional transfer rate) of chylomicrons to VLDL was around 40% lower (35 ± 25 vs 82 ± 58 pools/day; p=0.034) and direct clearance of chylomicrons was 5.6-fold higher (5.6 ± 2.2 vs 1.0 ± 1.8 pools/day; p < 0.001). During the postprandial period, ApoB-48 particles accounted for a higher proportion of total VLDL in individuals with type 2 diabetes (44%) compared with control participants (25%), and these ApoB-48 VLDL particles exhibited a fivefold longer residence time in the circulation (p < 0.01). No between-group differences were seen in the kinetics of ApoB-100 and TG in VLDL, or in LDL ApoB-100 production, pool size and clearance rate. As compared with control participants, the IDL ApoB-100 pool in individuals with type 2 diabetes was higher due to increased conversion from VLDL2. CONCLUSIONS/INTERPRETATION: Abnormalities in the metabolism of intestinally derived ApoB-48-containing lipoproteins in individuals with type 2 diabetes on statins may help to explain the residual risk of CVD and may be suitable targets for interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT02948777.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Apolipoprotein B-100/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Apolipoprotein B-48 , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/complications , Lipoproteins, VLDL/metabolism , Apolipoproteins B/metabolism , Apolipoproteins B/therapeutic use , Lipoproteins , Triglycerides , Lipoproteins, IDL , Chylomicrons
13.
Circulation ; 146(5): 398-411, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35678729

ABSTRACT

BACKGROUND: The role of diabetes in the development of valvular heart disease, and, in particular, the relation with risk factor control, has not been extensively studied. METHODS: We included 715 143 patients with diabetes registered in the Swedish National Diabetes Register and compared them with 2 732 333 matched controls randomly selected from the general population. First, trends were analyzed with incidence rates and Cox regression, which was also used to assess diabetes as a risk factor compared with controls, and, second, separately in patients with diabetes according to the presence of 5 risk factors. RESULTS: The incidence of valvular outcomes is increasing among patients with diabetes and the general population. In type 2 diabetes, systolic blood pressure, body mass index, and renal function were associated with valvular lesions. Hazard ratios for patients with type 2 diabetes who had nearly all risk factors within target ranges, compared with controls, were as follows: aortic stenosis 1.34 (95% CI, 1.31-1.38), aortic regurgitation 0.67 (95% CI, 0.64-0.70), mitral stenosis 1.95 (95% CI, 1.76-2.20), and mitral regurgitation 0.82 (95% CI, 0.79-0.85). Hazard ratios for patients with type 1 diabetes and nearly optimal risk factor control were as follows: aortic stenosis 2.01 (95% CI, 1.58-2.56), aortic regurgitation 0.63 (95% CI, 0.43-0.94), and mitral stenosis 3.47 (95% CI, 1.37-8.84). Excess risk in patients with type 2 diabetes for stenotic lesions showed hazard ratios for aortic stenosis 1.62 (95% CI, 1.59-1.65), mitral stenosis 2.28 (95% CI, 2.08-2.50), and excess risk in patients with type 1 diabetes showed hazard ratios of 2.59 (95% CI, 2.21-3.05) and 11.43 (95% CI, 6.18-21.15), respectively. Risk for aortic and mitral regurgitation was lower in type 2 diabetes: 0.81 (95% CI, 0.78-0.84) and 0.95 (95% CI, 0.92-0.98), respectively. CONCLUSIONS: Individuals with type 1 and 2 diabetes have greater risk for stenotic lesions, whereas risk for valvular regurgitation was lower in patients with type 2 diabetes. Patients with well-controlled cardiovascular risk factors continued to display higher risk for valvular stenosis, without a clear stepwise decrease in risk between various degrees of risk factor control.


Subject(s)
Aortic Valve Insufficiency , Aortic Valve Stenosis , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Heart Valve Diseases , Mitral Valve Insufficiency , Mitral Valve Stenosis , Aortic Valve Insufficiency/epidemiology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Heart Valve Diseases/complications , Heart Valve Diseases/epidemiology , Humans , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/epidemiology
14.
Chembiochem ; 24(1): e202200339, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36250581

ABSTRACT

Enzymes are effective biological catalysts that accelerate almost all metabolic reactions in living organisms. Synthetic modulators of enzymes are useful tools for the study of enzymatic reactions and can provide starting points for the design of new drugs. Here, we report on the discovery of a class of biologically active compounds that covalently modifies lysine residues in human liver pyruvate kinase (PKL), leading to allosteric activation of the enzyme (EC50 =0.29 µM). Surprisingly, the allosteric activation control point resides on the lysine residue K282 present in the catalytic site of PKL. These findings were confirmed by structural data, MS/MS experiments, and molecular modelling studies. Altogether, our study provides a molecular basis for the activation mechanism and establishes a framework for further development of human liver pyruvate kinase covalent activators.


Subject(s)
Lysine , Pyruvate Kinase , Humans , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Tandem Mass Spectrometry , Liver , Catalytic Domain , Allosteric Regulation
15.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33725119

ABSTRACT

The development and progression of cardiovascular disease (CVD) can mainly be attributed to the narrowing of blood vessels caused by atherosclerosis and thrombosis, which induces organ damage that will result in end-organ dysfunction characterized by events such as myocardial infarction or stroke. It is also essential to consider other contributory factors to CVD, including cardiac remodelling caused by cardiomyopathies and co-morbidities with other diseases such as chronic kidney disease. Besides, there is a growing amount of evidence linking the gut microbiota to CVD through several metabolic pathways. Hence, it is of utmost importance to decipher the underlying molecular mechanisms associated with these disease states to elucidate the development and progression of CVD. A wide array of systems biology approaches incorporating multi-omics data have emerged as an invaluable tool in establishing alterations in specific cell types and identifying modifications in signalling events that promote disease development. Here, we review recent studies that apply multi-omics approaches to further understand the underlying causes of CVD and provide possible treatment strategies by identifying novel drug targets and biomarkers. We also discuss very recent advances in gut microbiota research with an emphasis on how diet and microbial composition can impact the development of CVD. Finally, we present various biological network analyses and other independent studies that have been employed for providing mechanistic explanation and developing treatment strategies for end-stage CVD, namely myocardial infarction and stroke.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Gastrointestinal Microbiome , Renal Insufficiency, Chronic/epidemiology , Transcriptome , Animals , Biomarkers/blood , Biomarkers/urine , Blood Platelets/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/microbiology , Comorbidity , Diet , Humans , Risk Factors , Systems Biology/methods
16.
Brief Bioinform ; 22(2): 1751-1766, 2021 03 22.
Article in English | MEDLINE | ID: mdl-32201876

ABSTRACT

The abnormalities in human metabolism have been implicated in the progression of several complex human diseases, including certain cancers. Hence, deciphering the underlying molecular mechanisms associated with metabolic reprogramming in a disease state can greatly assist in elucidating the disease aetiology. An invaluable tool for establishing connections between global metabolic reprogramming and disease development is the genome-scale metabolic model (GEM). Here, we review recent work on the reconstruction of cell/tissue-type and cancer-specific GEMs and their use in identifying metabolic changes occurring in response to liver disease development, stratification of the heterogeneous disease population and discovery of novel drug targets and biomarkers. We also discuss how GEMs can be integrated with other biological networks for generating more comprehensive cell/tissue models. In addition, we review the various biological network analyses that have been employed for the development of efficient treatment strategies. Finally, we present three case studies in which independent studies converged on conclusions underlying liver disease.


Subject(s)
Computational Biology/methods , Liver Diseases/metabolism , Gene Expression Profiling , Humans , Liver Diseases/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Survival Rate , Systems Biology
17.
Arterioscler Thromb Vasc Biol ; 42(8): 1037-1047, 2022 08.
Article in English | MEDLINE | ID: mdl-35652335

ABSTRACT

BACKGROUND: The initiating step in atherogenesis is the electrostatic binding of LDL (low-density lipoprotein) to proteoglycan glycosaminoglycans in the arterial intima. However, although proteoglycans are widespread throughout the intima of most coronary artery segments, LDL is not evenly distributed, indicating that LDL retention is not merely dependent on the presence of proteoglycans. We aim to identify factors that promote the interaction between LDL and the vessel wall of human coronary arteries. METHODS: We developed an ex vivo model to investigate binding of labeled human LDL to human coronary artery sections without the interference of cellular processes. RESULTS: By staining consecutive sections of human coronary arteries, we found strong staining of sulfated glycosaminoglycans throughout the arterial intima, whereas endogenous LDL deposits were focally distributed. Ex vivo binding of LDL was uniform at all intimal areas with sulfated glycosaminoglycans. However, lowering the pH from 7.4 to 6.5 triggered a 35-fold increase in LDL binding. The pH-dependent binding was abolished by pretreating LDL with diethyl-pyrocarbonate, which blocks the protonation of histidine residues, or cyclohexanedione, which inhibits the positive charge of site B on LDL. Thus, both histidine protonation and site B are required for strong electrostatic LDL binding to the intima. CONCLUSIONS: This study identifies histidine protonation as an important component for electrostatic LDL binding to human coronary arteries. Our findings show that the local pH will have a profound impact on LDL's affinity for sulfated glycosaminoglycans, which may influence the retention and accumulation pattern of LDL in the arterial vasculature.


Subject(s)
Coronary Vessels , Lipoproteins, LDL , Coronary Vessels/metabolism , Glycosaminoglycans/metabolism , Histidine , Humans , Hydrogen-Ion Concentration , Lipoproteins, LDL/metabolism , Proteoglycans/metabolism , Static Electricity
18.
PLoS Genet ; 16(8): e1008975, 2020 08.
Article in English | MEDLINE | ID: mdl-32750056

ABSTRACT

The C. elegans proteins PAQR-2 (a homolog of the human seven-transmembrane domain AdipoR1 and AdipoR2 proteins) and IGLR-2 (a homolog of the mammalian LRIG proteins characterized by a single transmembrane domain and the presence of immunoglobulin domains and leucine-rich repeats in their extracellular portion) form a complex that protects against plasma membrane rigidification by promoting the expression of fatty acid desaturases and the incorporation of polyunsaturated fatty acids into phospholipids, hence increasing membrane fluidity. In the present study, we leveraged a novel gain-of-function allele of PAQR-1, a PAQR-2 paralog, to carry out structure-function studies. We found that the transmembrane domains of PAQR-2 are responsible for its functional requirement for IGLR-2, that PAQR-1 does not require IGLR-2 but acts via the same pathway as PAQR-2, and that the divergent N-terminal cytoplasmic domains of the PAQR-1 and PAQR-2 proteins serve a regulatory function and may regulate access to the catalytic site of these proteins. We also show that overexpression of human AdipoR1 or AdipoR2 alone is sufficient to confer increased palmitic acid resistance in HEK293 cells, and thus act in a manner analogous to the PAQR-1 gain-of-function allele.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Membrane Proteins/genetics , Receptors, Adiponectin/genetics , Alleles , Animals , Caenorhabditis elegans/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Gain of Function Mutation/genetics , HEK293 Cells , Humans , Membrane Fluidity/genetics , Phenotype , Phospholipids/genetics , Phospholipids/metabolism
19.
Semin Cancer Biol ; 68: 47-58, 2021 01.
Article in English | MEDLINE | ID: mdl-31568815

ABSTRACT

Drug repositioning is a powerful method that can assists the conventional drug discovery process by using existing drugs for treatment of a disease rather than its original indication. The first examples of repurposed drugs were discovered serendipitously, however data accumulated by high-throughput screenings and advancements in computational biology methods have paved the way for rational drug repositioning methods. As chemotherapeutic agents have notorious side effects that significantly reduce quality of life, drug repositioning promises repurposed noncancer drugs with little or tolerable adverse effects for cancer patients. Here, we review current drug-related data types and databases including some examples of web-based drug repositioning tools. Next, we describe systems biology approaches to be used in drug repositioning for effective cancer therapy. Finally, we highlight examples of mostly repurposed drugs for cancer treatment and provide an overview of future expectations in the field for development of effective treatment strategies.


Subject(s)
Antineoplastic Agents/therapeutic use , Computational Biology/methods , Drug Discovery , Drug Repositioning/methods , Neoplasms/drug therapy , Systems Biology/methods , Animals , Humans
20.
Diabetologia ; 65(1): 128-139, 2022 01.
Article in English | MEDLINE | ID: mdl-34743218

ABSTRACT

AIMS/HYPOTHESIS: Galectin-1 modulates inflammation and angiogenesis, and cross-sectional studies indicate that galectin-1 may be a uniting factor between obesity, type 2 diabetes and kidney function. We examined whether circulating galectin-1 can predict incidence of chronic kidney disease (CKD) and type 2 diabetes in a middle-aged population, and if Mendelian randomisation (MR) can provide evidence for causal direction of effects. METHODS: Participants (n = 4022; 58.6% women) in the Malmö Diet and Cancer Study-Cardiovascular Cohort enrolled between 1991 and 1994 (mean age 57.6 years) were examined. eGFR was calculated at baseline and after a mean follow-up of 16.6 ± 1.5 years. Diabetes status was ascertained through registry linkage (mean follow-up of 18.4 ± 6.1 years). The associations of baseline galectin-1 with incident CKD and type 2 diabetes were assessed with Cox regression, adjusting for established risk factors. In addition, a genome-wide association study on galectin-1 was performed to identify genetic instruments for two-sample MR analyses utilising the genetic associations obtained from the Chronic Kidney Disease Genetics (CKDGen) Consortium (41,395 cases and 439,303 controls) and the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (74,124 cases and 824,006 controls). One genome-wide significant locus in the galectin-1 gene region was identified (sentinel SNP rs7285699; p = 2.4 × 10-11). The association between galectin-1 and eGFR was also examined in individuals with newly diagnosed diabetes from the All New Diabetics In Scania (ANDIS) cohort. RESULTS: Galectin-1 was strongly associated with lower eGFR at baseline (p = 2.3 × 10-89) but not with incident CKD. However, galectin-1 was associated with increased risk of type 2 diabetes (per SD increase, HR 1.12; 95% CI 1.02, 1.24). Two-sample MR analyses could not ascertain a causal effect of galectin-1 on CKD (OR 0.92; 95% CI 0.82, 1.02) or type 2 diabetes (OR 1.05; 95% CI 0.98, 1.14) in a general population. However, in individuals with type 2 diabetes from ANDIS who belonged to the severe insulin-resistant diabetes subgroup and were at high risk of diabetic nephropathy, genetically elevated galectin-1 was significantly associated with higher eGFR (p = 5.7 × 10-3). CONCLUSIONS/INTERPRETATION: Galectin-1 is strongly associated with lower kidney function in cross-sectional analyses, and two-sample MR analyses suggest a causal protective effect on kidney function among individuals with type 2 diabetes at high risk of diabetic nephropathy. Future studies are needed to explore the mechanisms by which galectin-1 affects kidney function and whether it could be a useful target among individuals with type 2 diabetes for renal improvement.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Cross-Sectional Studies , Diabetes Mellitus, Type 2/genetics , Female , Galectin 1/genetics , Genome-Wide Association Study , Glomerular Filtration Rate , Humans , Male , Middle Aged , Renal Insufficiency, Chronic/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL