Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Publication year range
2.
Circ Res ; 135(2): 335-349, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38828596

ABSTRACT

BACKGROUND: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS: We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS: Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDL particles relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS: Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.


Subject(s)
Apolipoprotein A-I , Atherosclerosis , Diabetes Mellitus, Type 1 , Receptors, LDL , Animals , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/blood , Atherosclerosis/pathology , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/blood , Mice , Receptors, LDL/genetics , Receptors, LDL/deficiency , Receptors, LDL/metabolism , Apolipoprotein A-I/blood , Apolipoprotein A-I/metabolism , Male , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol Ester Transfer Proteins/blood , Mice, Knockout , Female , Mice, Inbred C57BL , Lipoproteins, HDL/blood , Lipoproteins, HDL/metabolism , Mice, Transgenic , Apolipoprotein B-100/metabolism , Apolipoprotein B-100/genetics , Apolipoprotein B-100/blood , Middle Aged , Disease Models, Animal , Adult
3.
Circulation ; 149(10): 774-787, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38018436

ABSTRACT

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Subject(s)
Apolipoprotein A-I , Cardiovascular Diseases , Humans , Apolipoprotein A-I/metabolism , Cardiovascular Diseases/metabolism , Lipoproteins, HDL/metabolism , Cholesterol , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Macrophages/metabolism , Cholesterol, HDL
4.
Circ Res ; 132(11): 1505-1520, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37228237

ABSTRACT

The CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) and colchicine trials suggest an important role of inflammasomes and their major product IL-1ß (interleukin 1ß) in human atherosclerotic cardiovascular disease. Moreover, studies in mouse models indicate a causal role of inflammasomes and IL-1ß in atherosclerosis. However, recent studies have led to a more granular view of the role of inflammasomes in atherosclerosis. Studies in hyperlipidemic mouse models suggest that prominent activation of the NLRP3 inflammasome requires a second hit such as defective cholesterol efflux, defective DNA repair, clonal hematopoiesis or diabetes. Similarly in humans some mutations promoting clonal hematopoiesis increase coronary artery disease risk in part by promoting inflammasome activation. Recent studies in mice and humans point to a wider role of the AIM2 (absent in melanoma 2) inflammasome in promoting cardiovascular disease including in some forms of clonal hematopoiesis and diabetes. These developments suggest a precision medicine approach in which treatments targeting inflammasomes or IL-1ß might be best employed in clinical settings involving increased inflammasome activation.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Thrombosis , Mice , Humans , Animals , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Atherosclerosis/genetics , Interleukin-1beta
5.
J Lipid Res ; 65(1): 100475, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972731

ABSTRACT

Increased circulating levels of apolipoprotein C3 (APOC3) predict cardiovascular disease (CVD) risk in humans, and APOC3 promotes atherosclerosis in mouse models. APOC3's mechanism of action is due in large part to its ability to slow the clearance of triglyceride-rich lipoproteins (TRLs) and their remnants when APOC3 is carried by these lipoproteins. However, different pools and forms of APOC3 exert distinct biological effects or associations with atherogenic processes. Thus, lipid-free APOC3 induces inflammasome activation in monocytes whereas lipid particle-bound APOC3 does not. APOC3-enriched LDL binds better to the vascular glycosaminoglycan biglycan than does LDL depleted of APOC3. Patterns of APOC3 glycoforms predict CVD risk differently. The function of APOC3 bound to HDL is largely unknown. There is still much to learn about the mechanisms of action of different forms and pools of APOC3 in atherosclerosis and CVD, and whether APOC3 inhibition would prevent CVD risk in patients on LDL-cholesterol lowering medications.


Subject(s)
Atherosclerosis , Lipoproteins , Mice , Animals , Humans , Apolipoprotein C-III , Lipoproteins/metabolism , Triglycerides/metabolism , Atherosclerosis/metabolism
6.
J Lipid Res ; 65(4): 100531, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490635

ABSTRACT

Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 µl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.


Subject(s)
Apolipoproteins , Isotope Labeling , Proteomics , Animals , Mice , Proteomics/methods , Apolipoproteins/blood , Kinetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Apolipoproteins E/deficiency , Apolipoproteins E/blood , Chromatography, Liquid/methods , Mice, Inbred C57BL , Mice, Knockout , Male
7.
Arterioscler Thromb Vasc Biol ; 43(7): 1124-1133, 2023 07.
Article in English | MEDLINE | ID: mdl-37226733

ABSTRACT

APOA1 and APOB are the structural proteins of high-density lipoprotein and APOB-containing lipoproteins, such as low-density lipoprotein and very low-density lipoprotein, respectively. The 4 smaller APOCs (APOC1, APOC2, APOC3, and APOC4) are exchangeable apolipoproteins; they are readily transferred among high-density lipoproteins and APOB-containing lipoproteins. The APOCs regulate plasma triglyceride and cholesterol levels by modulating substrate availability and activities of enzymes interacting with lipoproteins and by interfering with APOB-containing lipoprotein uptake through hepatic receptors. Of the 4 APOCs, APOC3 has been best studied in relation to diabetes. Elevated serum APOC3 levels predict incident cardiovascular disease and progression of kidney disease in people with type 1 diabetes. Insulin suppresses APOC3 levels, and accordingly, elevated APOC3 levels associate with insulin deficiency and insulin resistance. Mechanistic studies in a mouse model of type 1 diabetes have demonstrated that APOC3 acts in the causal pathway of diabetes-accelerated atherosclerosis. The mechanism is likely due to the ability of APOC3 to slow the clearance of triglyceride-rich lipoproteins and their remnants, thereby causing an increased accumulation of atherogenic lipoprotein remnants in lesions of atherosclerosis. Less is known about the roles of APOC1, APOC2, and APOC4 in diabetes.


Subject(s)
Atherosclerosis , Diabetes Mellitus, Type 1 , Insulins , Mice , Animals , Apolipoprotein C-II , Lipoproteins , Triglycerides , Lipoproteins, HDL/metabolism , Apolipoprotein C-III , Lipoproteins, LDL/metabolism , Atherosclerosis/metabolism , Apolipoproteins B
8.
J Lipid Res ; 64(6): 100381, 2023 06.
Article in English | MEDLINE | ID: mdl-37100172

ABSTRACT

Patients with chronic kidney disease (CKD) are at high risk for CVD. However, traditional CVD risk factors cannot completely explain the increased risk. Altered HDL proteome is linked with incident CVD in CKD patients, but it is unclear whether other HDL metrics are associated with incident CVD in this population. In the current study, we analyzed samples from two independent prospective case-control cohorts of CKD patients, the Clinical Phenotyping and Resource Biobank Core (CPROBE) and the Chronic Renal Insufficiency Cohort (CRIC). We measured HDL particle sizes and concentrations (HDL-P) by calibrated ion mobility analysis and HDL cholesterol efflux capacity (CEC) by cAMP-stimulated J774 macrophages in 92 subjects from the CPROBE cohort (46 CVD and 46 controls) and in 91 subjects from the CRIC cohort (34 CVD and 57 controls). We tested associations of HDL metrics with incident CVD using logistic regression analysis. No significant associations were found for HDL-C or HDL-CEC in either cohort. Total HDL-P was only negatively associated with incident CVD in the CRIC cohort in unadjusted analysis. Among the six sized HDL subspecies, only medium-sized HDL-P was significantly and negatively associated with incident CVD in both cohorts after adjusting for clinical confounders and lipid risk factors with odds ratios (per 1-SD) of 0.45 (0.22-0.93, P = 0.032) and 0.42 (0.20-0.87, P = 0.019) for CPROBE and CRIC cohorts, respectively. Our observations indicate that medium-sized HDL-P-but not other-sized HDL-P or total HDL-P, HDL-C, or HDL-CEC-may be a prognostic cardiovascular risk marker in CKD.


Subject(s)
Cardiovascular Diseases , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/complications , Cholesterol, HDL , Risk Factors , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology
9.
Am J Physiol Endocrinol Metab ; 324(5): E461-E475, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37053049

ABSTRACT

Hypogonadism in males confers elevated cardiovascular disease (CVD) risk by unknown mechanisms. Recent radiological evidence suggests that low testosterone (T) is associated with mediobasal hypothalamic (MBH) gliosis, a central nervous system (CNS) cellular response linked to metabolic dysfunction. To address mechanisms linking CNS androgen action to CVD risk, we generated a hypogonadal, hyperlipidemic mouse model with orchiectomy (ORX) combined with hepatic PCSK9 overexpression. After 4 wk of high-fat, high-sucrose diet (HFHS) consumption, despite equal body weights and glucose tolerance, androgen-deficient ORX mice had a more atherogenic lipid profile and increased liver and leukocyte inflammatory signaling compared with sham-operated control mice. Along with these early CVD risk indicators, ORX markedly amplified HFHS-induced astrogliosis in the MBH. Transcriptomic analysis further revealed that ORX and high-fat diet feeding induced upregulation of inflammatory pathways and downregulation of metabolic pathways in hypothalamic astrocytes. To interrogate the role of sex steroid signaling in the CNS in cardiometabolic risk and MBH inflammation, central infusion of T and dihydrotestosterone (DHT) was performed on ORX mice. Central DHT prevented MBH astrogliosis and reduced the liver inflammatory signaling and monocytosis induced by HFHS and ORX; T had a partial protective effect. Finally, a cross-sectional study in 41 adult men demonstrated a positive correlation between radiological evidence of MBH gliosis and plasma lipids. These findings demonstrate that T deficiency in combination with a Western-style diet promotes hypothalamic gliosis concomitant with increased atherogenic risk factors and provide supportive evidence for regulation of lipid metabolism and cardiometabolic risk determinants by the CNS action of sex steroids.NEW & NOTEWORTHY This study provides evidence that hypothalamic gliosis is a key early event through which androgen deficiency in combination with a Western-style diet might lead to cardiometabolic dysregulation in males. Furthermore, this work provides the first evidence in humans of a positive association between hypothalamic gliosis and LDL-cholesterol, advancing our knowledge of CNS influences on CVD risk progression.


Subject(s)
Androgens , Cardiovascular Diseases , Humans , Mice , Male , Animals , Proprotein Convertase 9 , Diet, High-Fat/adverse effects , Gliosis , Orchiectomy , Cross-Sectional Studies , Risk Factors , Dihydrotestosterone
11.
Arterioscler Thromb Vasc Biol ; 42(7): 819-830, 2022 07.
Article in English | MEDLINE | ID: mdl-35616031

ABSTRACT

Both type 1 and type 2 diabetes are associated with an increased risk of atherosclerotic cardiovascular disease (CVD). Research based on human-first or bedside-to-bench approaches has provided new insights into likely mechanisms behind this increased risk. Although both forms of diabetes are associated with hyperglycemia, it is becoming increasingly clear that altered lipoprotein metabolism also plays a critical role in predicting CVD risk in people with diabetes. This review examines recent findings indicating that increased levels of circulating remnant lipoproteins could be a missing link between diabetes and CVD. Although CVD risk associated with diabetes is clearly multifactorial in nature, these findings suggest that we should increase efforts in evaluating whether remnant lipoproteins or the proteins that govern their metabolism are biomarkers of incident CVD in people living with diabetes and whether reducing remnant lipoproteins will prevent the increased CVD risk associated with diabetes.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Atherosclerosis/epidemiology , Atherosclerosis/etiology , Atherosclerosis/metabolism , Biomarkers , Cardiovascular Diseases/complications , Cardiovascular Diseases/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Humans , Lipoproteins/metabolism
12.
J Lipid Res ; 63(3): 100174, 2022 03.
Article in English | MEDLINE | ID: mdl-35101425

ABSTRACT

Antisense oligonucleotides (ASOs) against Ldl receptor (Ldlr-ASO) represent a promising strategy to promote hypercholesterolemic atherosclerosis in animal models without the need for complex breeding strategies. Here, we sought to characterize and contrast atherosclerosis in mice given Ldlr-ASO with those bearing genetic Ldlr deficiency. To promote atherosclerosis, male and female C57Bl6/J mice were either given weekly injections of Ldlr-ASO (5 mg/kg once per week) or genetically deficient in Ldlr (Ldlr-/-). Mice consumed either standard rodent chow or a diet high in saturated fat and sucrose with 0.15% added cholesterol for 16 weeks. While both models of Ldlr deficiency promoted hypercholesterolemia, Ldlr-/- mice exhibited nearly 2-fold higher cholesterol levels than Ldlr-ASO mice, reflected by increased VLDL and LDL levels. Consistent with this, the en face atherosclerotic lesion area was 3-fold and 3.6-fold greater in male and female mice with genetic Ldlr deficiency, respectively, as compared with the modest atherosclerosis observed following Ldlr-ASO treatment. Aortic sinus lesion sizes, fibrosis, smooth muscle actin, and necrotic core areas were also larger in Ldlr-/- mice, suggesting a more advanced phenotype. Despite a more modest effect on hypercholesterolemia, Ldlr-ASO induced greater hepatic inflammatory gene expression, macrophage accumulation, and histological lobular inflammation than was observed in Ldlr-/- mice. We conclude Ldlr-ASO is a promising tool for the generation of complex rodent models with which to study atherosclerosis but does not promote comparable levels of hypercholesterolemia or atherosclerosis as Ldlr-/- mice and increases hepatic inflammation. Thus, genetic Ldlr deficiency may be a superior model, depending on the proposed use.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Animals , Atherosclerosis/metabolism , Cholesterol , Disease Models, Animal , Female , Hypercholesterolemia/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pharmaceutical Preparations , Receptors, LDL/genetics
13.
J Lipid Res ; 63(4): 100196, 2022 04.
Article in English | MEDLINE | ID: mdl-35300983

ABSTRACT

Atherosclerotic CVD is the major cause of death in patients with type 1 diabetes mellitus (T1DM). Alterations in the HDL proteome have been shown to associate with prevalent CVD in T1DM. We therefore sought to determine which proteins carried by HDL might predict incident CVD in patients with T1DM. Using targeted MS/MS, we quantified 50 proteins in HDL from 181 T1DM subjects enrolled in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used Cox proportional regression analysis and a case-cohort design to test associations of HDL proteins with incident CVD (myocardial infarction, coronary artery bypass grafting, angioplasty, or death from coronary heart disease). We found that only one HDL protein-SFTPB (pulmonary surfactant protein B)-predicted incident CVD in all the models tested. In a fully adjusted model that controlled for lipids and other risk factors, the hazard ratio was 2.17 per SD increase of SFTPB (95% confidence interval, 1.12-4.21, P = 0.022). In addition, plasma fractionation demonstrated that SFTPB is nearly entirely bound to HDL. Although previous studies have shown that high plasma levels of SFTPB associate with prevalent atherosclerosis only in smokers, we found that SFTPB predicted incident CVD in T1DM independently of smoking status and a wide range of confounding factors, including HDL-C, LDL-C, and triglyceride levels. Because SFTPB is almost entirely bound to plasma HDL, our observations support the proposal that SFTPB carried by HDL is a marker-and perhaps mediator-of CVD risk in patients with T1DM.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Pulmonary Surfactant-Associated Protein B , Cholesterol, HDL , Diabetes Mellitus, Type 1/complications , Humans , Prospective Studies , Risk Factors , Tandem Mass Spectrometry
14.
J Lipid Res ; 63(3): 100168, 2022 03.
Article in English | MEDLINE | ID: mdl-35051413

ABSTRACT

Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.


Subject(s)
Apolipoprotein A-I , Cholesterol , ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein A-I/metabolism , Biological Transport , Cholesterol/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Phospholipids/metabolism
15.
Circ Res ; 126(9): 1209-1227, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32324504

ABSTRACT

Macrophage immunometabolism, the changes in intracellular metabolic pathways that alter the function of these highly plastic cells, has been the subject of intense interest in the past few years, in part because macrophage immunometabolism plays important roles in atherosclerosis and other inflammatory diseases. In this review article, part of the Compendium on Atherosclerosis, we introduce the concepts of (1) intracellular immunometabolism-the canonical pathways of intrinsic cell activation leading to changes in intracellular metabolism, which in turn alter cellular function; and (2) intercellular immunometabolism-conditions in which intermediates of cellular metabolism are transferred from one cell to another, thereby altering the function of the recipient cell. The recent discovery that the metabolite cargo of dead and dying cells ingested through efferocytosis by macrophages can alter metabolic pathways and downstream function of the efferocyte is markedly changing the way we think about macrophage immunometabolism. Metabolic transitions of macrophages contribute to their functions in all stages of atherosclerosis, from lesion initiation to formation of advanced lesions characterized by necrotic cores, to lesion regression following aggressive lipid lowering. This review article discusses recent advances in our understanding of these different aspects of macrophage immunometabolism in atherosclerosis. With the increasing understanding of the roles of macrophage immunometabolism in atherosclerosis, new exciting concepts and potential targets for intervention are emerging.


Subject(s)
Arteries/metabolism , Atherosclerosis/metabolism , Energy Metabolism , Macrophages/metabolism , Animals , Arteries/immunology , Arteries/pathology , Atherosclerosis/immunology , Atherosclerosis/pathology , Humans , Macrophages/immunology , Macrophages/pathology , Plaque, Atherosclerotic , Signal Transduction
16.
Circ Res ; 127(9): 1198-1210, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32819213

ABSTRACT

RATIONALE: HDL (high-density lipoprotein) may be cardioprotective because it accepts cholesterol from macrophages via the cholesterol transport proteins ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1). The ABCA1-specific cellular cholesterol efflux capacity (ABCA1 CEC) of HDL strongly and negatively associates with cardiovascular disease risk, but how diabetes mellitus impacts that step is unclear. OBJECTIVE: To test the hypothesis that HDL's cholesterol efflux capacity is impaired in subjects with type 2 diabetes mellitus. METHODS AND RESULTS: We performed a case-control study with 19 subjects with type 2 diabetes mellitus and 20 control subjects. Three sizes of HDL particles, small HDL, medium HDL, and large HDL, were isolated by high-resolution size exclusion chromatography from study subjects. Then we assessed the ABCA1 CEC of equimolar concentrations of particles. Small HDL accounted for almost all of ABCA1 CEC activity of HDL. ABCA1 CEC-but not ABCG1 CEC-of small HDL was lower in the subjects with type 2 diabetes mellitus than the control subjects. Isotope dilution tandem mass spectrometry demonstrated that the concentration of SERPINA1 (serpin family A member 1) in small HDL was also lower in subjects with diabetes mellitus. Enriching small HDL with SERPINA1 enhanced ABCA1 CEC. Structural analysis of SERPINA1 identified 3 amphipathic α-helices clustered in the N-terminal domain of the protein; biochemical analyses demonstrated that SERPINA1 binds phospholipid vesicles. CONCLUSIONS: The ABCA1 CEC of small HDL is selectively impaired in type 2 diabetes mellitus, likely because of lower levels of SERPINA1. SERPINA1 contains a cluster of amphipathic α-helices that enable apolipoproteins to bind phospholipid and promote ABCA1 activity. Thus, impaired ABCA1 activity of small HDL particles deficient in SERPINA1 could increase cardiovascular disease risk in subjects with diabetes mellitus.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Cardiovascular Diseases/etiology , Cholesterol/metabolism , Diabetes Mellitus, Type 2/metabolism , Lipoproteins, HDL/metabolism , alpha 1-Antitrypsin/metabolism , Apolipoprotein C-II/analysis , Apolipoproteins/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Female , Humans , Macrophages/metabolism , Male , Middle Aged , Phospholipids/metabolism , Protein Structure, Tertiary , Risk , Triglycerides/analysis , alpha 1-Antitrypsin/chemistry
18.
Arterioscler Thromb Vasc Biol ; 41(8): 2330-2341, 2021 08.
Article in English | MEDLINE | ID: mdl-34134520

ABSTRACT

OBJECTIVE: Niacin therapy fails to reduce cardiovascular events in statin-treated subjects even though it increases plasma HDL-C (HDL [high-density lipoprotein] cholesterol) and decreases LDL-C (LDL [low-density lipoprotein] cholesterol) and triglyceride levels. To investigate potential mechanisms for this lack of cardioprotection, we quantified the HDL proteome of subjects in 2 niacin clinical trials: the CPC study (Carotid Plaque Composition) and the HDL Proteomics substudy of the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides). APPROACH AND RESULTS: Using targeted proteomics, we quantified levels of 31 HDL proteins from 124 CPC subjects and 120 AIM-HIGH subjects. The samples were obtained at baseline and after 1 year of statin monotherapy or niacin-statin combination therapy. Compared with statin monotherapy, niacin-statin combination therapy did not reduce HDL-associated apolipoproteins APOC1, APOC2, APOC3, and APOC4, despite significantly lowering triglycerides. In contrast, niacin markedly elevated HDL-associated PLTP (phospholipid transfer protein), CLU (clusterin), and HP/HPR (haptoglobin/haptoglobinrelated proteins; P≤0.0001 for each) in both the CPC and AIM-HIGH cohorts. CONCLUSIONS: The addition of niacin to statin therapy resulted in elevated levels of multiple HDL proteins linked to increased atherosclerotic risk, which might have compromised the cardioprotective effects associated with higher HDL-C levels and lower levels of LDL-C and triglycerides. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00715273; NCT00880178; NCT00120289.


Subject(s)
Atherosclerosis/drug therapy , Cardiotonic Agents/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipoproteins, HDL/chemistry , Niacin/therapeutic use , Adult , Atherosclerosis/blood , Cardiotonic Agents/pharmacology , Cardiovascular Diseases/blood , Cardiovascular Diseases/prevention & control , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lipoproteins, HDL/blood , Male , Middle Aged , Niacin/pharmacology , Proteomics
19.
Mol Pharmacol ; 99(5): 342-357, 2021 05.
Article in English | MEDLINE | ID: mdl-33574048

ABSTRACT

In recent years, highly sensitive mass spectrometry-based phosphoproteomic analysis is beginning to be applied to identification of protein kinase substrates altered downstream of increased cAMP. Such studies identify a very large number of phosphorylation sites regulated in response to increased cAMP. Therefore, we now are tasked with the challenge of determining how many of these altered phosphorylation sites are relevant to regulation of function in the cell. This minireview describes the use of phosphoproteomic analysis to monitor the effects of cyclic nucleotide phosphodiesterase (PDE) inhibitors on cAMP-dependent phosphorylation events. More specifically, it describes two examples of this approach carried out in the authors' laboratories using the selective PDE inhibitor approach. After a short discussion of several likely conclusions suggested by these analyses of cAMP function in steroid hormone-producing cells and also in T-cells, it expands into a discussion about some newer and more speculative interpretations of the data. These include the idea that multiple phosphorylation sites and not a single rate-limiting step likely regulate these and, by analogy, many other cAMP-dependent pathways. In addition, the idea that meaningful regulation requires a high stoichiometry of phosphorylation to be important is discussed and suggested to be untrue in many instances. These new interpretations have important implications for drug design, especially for targeting pathway agonists. SIGNIFICANCE STATEMENT: Phosphoproteomic analyses identify thousands of altered phosphorylation sites upon drug treatment, providing many possible regulatory targets but also highlighting questions about which phosphosites are functionally important. These data imply that multistep processes are regulated by phosphorylation at not one but rather many sites. Most previous studies assumed a single step or very few rate-limiting steps were changed by phosphorylation. This concept should be changed. Previous interpretations also assumed substoichiometric phosphorylation was not of regulatory importance. This assumption also should be changed.


Subject(s)
Cyclic AMP/metabolism , Phosphorylation/physiology , Proteome/metabolism , Animals , Humans , Proteomics/methods , Signal Transduction/physiology
20.
Am J Pathol ; 190(4): 830-843, 2020 04.
Article in English | MEDLINE | ID: mdl-32035059

ABSTRACT

The molecular mechanisms of prostate inflammation are unclear. We hypothesized that heme oxygenase 1 (HMOX1; HO-1), an enzyme responsible for degradation of heme to carbon monoxide, bilirubin, and iron, is an important regulator of inflammation and epithelial responses in the prostate. Injection of non-uropathogenic Escherichia coli (MG1655 strain) or phosphate-buffered saline into the urethra of mice led to increased numbers of CD45+ leukocytes and mitotic markers (phosphorylated histone H3 and phosphorylated ERK1/2) in the prostate glands. Leukocyte infiltration was elevated in the prostates harvested from mice lacking HO-1 in myeloid compartment. Conversely, exogenous carbon monoxide (250 ppm) increased IL-1ß levels and suppressed cell proliferation in the prostates. Carbon monoxide did not affect the number of infiltrating CD45+ cells in the prostates of E. coli- or phosphate-buffered saline-treated mice. Interestingly, immunomodulatory effects of HO-1 and/or carbon monoxide correlated with early induction of the long-chain acyl-CoA synthetase 1 (ACSL1). ACSL1 levels were elevated in response to E. coli treatment, and macrophage-expressed ACSL1 was in part required for controlling of IL-1ß expression and prostate cancer cell colony growth in soft agar. These results suggest that HO-1 and/or carbon monoxide might play a distinctive role in modulating prostate inflammation, cell proliferation, and IL-1ß levels in part via an ACSL1-mediated pathway.


Subject(s)
Escherichia coli Infections/complications , Heme Oxygenase-1/metabolism , Heme/metabolism , Inflammation/immunology , Lipid Metabolism/immunology , Membrane Proteins/metabolism , Prostate/immunology , Animals , Bilirubin/metabolism , Carbon Monoxide/metabolism , Cell Proliferation , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Escherichia coli/immunology , Escherichia coli Infections/microbiology , Heme Oxygenase-1/genetics , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Prostate/metabolism , Prostate/microbiology , Prostate/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL