Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Adv ; 10(5): eadi9091, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306431

ABSTRACT

H3K27M, a driver mutation with T and B cell neoepitope characteristics, defines an aggressive subtype of diffuse glioma with poor survival. We functionally dissect the immune response of one patient treated with an H3K27M peptide vaccine who subsequently entered complete remission. The vaccine robustly expanded class II human leukocyte antigen (HLA)-restricted peripheral H3K27M-specific T cells. Using functional assays, we characterized 34 clonally unique H3K27M-reactive T cell receptors and identified critical, conserved motifs in their complementarity-determining region 3 regions. Using detailed HLA mapping, we further demonstrate that diverse HLA-DQ and HLA-DR alleles present immunogenic H3K27M epitopes. Furthermore, we identified and profiled H3K27M-reactive B cell receptors from activated B cells in the cerebrospinal fluid. Our results uncover the breadth of the adaptive immune response against a shared clonal neoantigen across multiple HLA allelotypes and support the use of class II-restricted peptide vaccines to stimulate tumor-specific T and B cells harboring receptors with therapeutic potential.


Subject(s)
Glioma , T-Lymphocytes , Humans , HLA-DR Antigens , Vaccination , Glioma/genetics , Epitopes
2.
Cancer Res Commun ; 4(8): 2189-2202, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39056192

ABSTRACT

Type I interferons (IFN) are immune-stimulatory cytokines involved in antiviral and antitumor immune responses. They enhance the efficacy of immunogenic anticancer therapies such as radiotherapy by activating both innate and adaptive immune cells. Macrophages are one of the most abundant innate immune cells in the immune microenvironment of melanoma brain metastases (MBM) and can exert potent immune-suppressive functions. Here, we investigate the potential of tumoral type I IFNs to repolarize tumor-associated macrophages (TAM) in two murine MBM models and assess the effects of radiotherapy-induced type I IFN on TAMs in a transcriptomic MBM patient dataset. In mice, we describe a proinflammatory M1-like TAM phenotype induced by tumoral IFNß and identify a myeloid type I IFN-response signature associated with a high M1/M2-like TAM ratio. Following irradiation, patients with MBM displaying a myeloid type I IFN-response signature showed increased overall survival, providing evidence that tumoral IFNß supports an effective antitumor immune response by re-educating immune-regulatory TAM. These findings uncover type I IFN-inducing therapies as a potential macrophage-targeting therapeutic approach and provide a rationale for combining radiotherapy with concomitant immunotherapy to improve treatment response in patients with MBM. SIGNIFICANCE: Our study shows that re-education of tumor-associated macrophages by tumoral IFNß translates into improved clinical outcome in patients with melanoma brain metastases, providing pathomechanistic insights into synergistic type I interferon-inducing therapies with immunotherapies and warranting investigation of IFNß as a predictive biomarker for combined radioimmunotherapy.


Subject(s)
Brain Neoplasms , Interferon-beta , Melanoma , Tumor-Associated Macrophages , Brain Neoplasms/secondary , Brain Neoplasms/immunology , Animals , Mice , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Melanoma/immunology , Melanoma/pathology , Melanoma/drug therapy , Melanoma/secondary , Phenotype , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Mice, Inbred C57BL , Female , Cell Line, Tumor
3.
Neuro Oncol ; 26(2): 266-278, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37715782

ABSTRACT

BACKGROUND: Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS: T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS: An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION: NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.


Subject(s)
Cancer Vaccines , Glioblastoma , Mice , Animals , Humans , Glioblastoma/genetics , Glioblastoma/therapy , Cancer Vaccines/therapeutic use , Vaccines, Subunit , Receptors, Antigen, T-Cell , T-Lymphocytes , Antigens, Neoplasm/genetics , Cell Adhesion Molecules, Neuronal
4.
Sci Adv ; 10(5): eadk3060, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306432

ABSTRACT

Effective, unbiased, high-throughput methods to functionally identify both class II and class I HLA-presented T cell epitopes and their cognate T cell receptors (TCRs) are essential for and prerequisite to diagnostic and therapeutic applications, yet remain underdeveloped. Here, we present T-FINDER [T cell Functional Identification and (Neo)-antigen Discovery of Epitopes and Receptors], a system to rapidly deconvolute CD4 and CD8 TCRs and targets physiologically processed and presented by an individual's unmanipulated, complete human leukocyte antigen (HLA) haplotype. Combining a highly sensitive TCR signaling reporter with an antigen processing system to overcome previously undescribed limitations to target expression, T-FINDER both robustly identifies unknown peptide:HLA ligands from antigen libraries and rapidly screens and functionally validates the specificity of large TCR libraries against known or predicted targets. To demonstrate its capabilities, we apply the platform to multiple TCR-based applications, including diffuse midline glioma, celiac disease, and rheumatoid arthritis, providing unique biological insights and showcasing T-FINDER's potency and versatility.


Subject(s)
Histocompatibility Antigens Class I , Receptors, Antigen, T-Cell , Humans , Ligands , Receptors, Antigen, T-Cell/metabolism , HLA Antigens , Histocompatibility Antigens Class II
5.
Neurol Res Pract ; 5(1): 55, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37853454

ABSTRACT

INTRODUCTION: Diffuse midline gliomas (DMG) are universally lethal central nervous system tumors that carry almost unanimously the clonal driver mutation histone-3 K27M (H3K27M). The single amino acid substitution of lysine to methionine harbors a neoantigen that is presented in tumor tissue. The long peptide vaccine H3K27M-vac targeting this major histocompatibility complex class II (MHC class II)-restricted neoantigen induces mutation-specific immune responses that suppress the growth of H3K27M+ flank tumors in an MHC-humanized rodent model. METHODS: INTERCEPT H3 is a non-controlled open label, single arm, multicenter national phase 1 trial to assess safety, tolerability and immunogenicity of H3K27M-vac in combination with standard radiotherapy and the immune checkpoint inhibitor atezolizumab (ATE). 15 adult patients with newly diagnosed K27M-mutant histone-3.1 (H3.1K27M) or histone-3.3 (H3.3K27M) DMG will be enrolled in this trial. The 27mer peptide vaccine H3K27M-vac will be administered concomitantly to standard radiotherapy (RT) followed by combinatorial treatment with the programmed death-ligand 1 (PD-L1) targeting antibody ATE. The first three vaccines will be administered bi-weekly (q2w) followed by a dose at the beginning of recovery after RT and six-weekly administrations of doses 5 to 11 thereafter. In a safety lead-in, the first three patients (pts. 1-3) will be enrolled sequentially. PERSPECTIVE: H3K27M-vac is a neoepitope targeting long peptide vaccine derived from the clonal driver mutation H3K27M in DMG. The INTERCEPT H3 trial aims at demonstrating (1) safety and (2) immunogenicity of repeated fixed dose vaccinations of H3K27M-vac administered with RT and ATE in adult patients with newly diagnosed H3K27M-mutant DMG. TRIAL REGISTRATION: NCT04808245.

6.
Nat Med ; 29(10): 2586-2592, 2023 10.
Article in English | MEDLINE | ID: mdl-37735561

ABSTRACT

Substitution of lysine 27 to methionine in histone H3 (H3K27M) defines an aggressive subtype of diffuse glioma. Previous studies have shown that a H3K27M-specific long peptide vaccine (H3K27M-vac) induces mutation-specific immune responses that control H3K27M+ tumors in major histocompatibility complex-humanized mice. Here we describe a first-in-human treatment with H3K27M-vac of eight adult patients with progressive H3K27M+ diffuse midline glioma on a compassionate use basis. Five patients received H3K27M-vac combined with anti-PD-1 treatment based on physician's discretion. Repeat vaccinations with H3K27M-vac were safe and induced CD4+ T cell-dominated, mutation-specific immune responses in five of eight patients across multiple human leukocyte antigen types. Median progression-free survival after vaccination was 6.2 months and median overall survival was 12.8 months. One patient with a strong mutation-specific T cell response after H3K27M-vac showed pseudoprogression followed by sustained complete remission for >31 months. Our data demonstrate safety and immunogenicity of H3K27M-vac in patients with progressive H3K27M+ diffuse midline glioma.


Subject(s)
Brain Neoplasms , Glioma , Vaccines , Humans , Adult , Animals , Mice , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Histones/genetics , Glioma/genetics , Glioma/therapy , Mutation/genetics
7.
Cancer Discov ; 11(10): 2564-2581, 2021 10.
Article in English | MEDLINE | ID: mdl-33941591

ABSTRACT

CDK4/6 inhibitors are approved to treat breast cancer and are in trials for other malignancies. We examined CDK4/6 inhibition in mouse and human CD8+ T cells during early stages of activation. Mice receiving tumor-specific CD8+ T cells treated with CDK4/6 inhibitors displayed increased T-cell persistence and immunologic memory. CDK4/6 inhibition upregulated MXD4, a negative regulator of MYC, in both mouse and human CD8+ T cells. Silencing of Mxd4 or Myc in mouse CD8+ T cells demonstrated the importance of this axis for memory formation. We used single-cell transcriptional profiling and T-cell receptor clonotype tracking to evaluate recently activated human CD8+ T cells in patients with breast cancer before and during treatment with either palbociclib or abemaciclib. CDK4/6 inhibitor therapy in humans increases the frequency of CD8+ memory precursors and downregulates their expression of MYC target genes, suggesting that CDK4/6 inhibitors in patients with cancer may augment long-term protective immunity. SIGNIFICANCE: CDK4/6 inhibition skews newly activated CD8+ T cells toward a memory phenotype in mice and humans with breast cancer. CDK4/6 inhibitors may have broad utility outside breast cancer, particularly in the neoadjuvant setting to augment CD8+ T-cell priming to tumor antigens prior to dosing with checkpoint blockade.This article is highlighted in the In This Issue feature, p. 2355.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Adult , Aged , Aminopyridines/therapeutic use , Animals , Benzimidazoles/therapeutic use , Breast Neoplasms/pathology , Breast Neoplasms, Male/drug therapy , Breast Neoplasms, Male/pathology , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Piperazines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyridines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL