Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Br J Cancer ; 127(11): 2034-2042, 2022 11.
Article in English | MEDLINE | ID: mdl-36175621

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionised treatment of advanced non-small cell lung cancer (aNSCLC), but a proportion of patients had no clinical benefit and even experienced detrimental effects. This study aims to characterise patients experiencing hyperprogression (HPD) and early death (ED) by longitudinal liquid biopsy. METHODS: aNSCLC receiving ICIs were prospectively enrolled. Plasma was collected at baseline (T1) and after 3/4 weeks of treatment, according to the treatment schedule (T2). Cell-free DNA (cfDNA) was quantified and analysed by NGS. cfDNA quantification and variant allele fraction (VAF) of tumour-associated genetic alterations were evaluated for their potential impact on outcome. The genetic alteration with the highest VAF (maxVAF) at baseline was considered as a reference. RESULTS: From March 2017 to August 2019, 171 patients were enrolled. Five cases matched criteria for HPD and 31 ED were recorded; one overlapped. Quantification of cfDNA at T2 and its absolute and relative variation (T2-T1) were significantly associated with the risk of ED (P = 0.012, P = 0.005, P = 0.009). MaxVAF relative change (T2-T1/T1) was significantly associated with the risk of HPD (P = 0.02). After identifying optimal cut-off values, a two-step risk assessment model was proposed. DISCUSSION: Liquid biopsy performed early during treatment has the potential to identify patients at high risk of ED and HPD.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Liquid Biopsy , Disease Progression , Cell-Free Nucleic Acids/genetics
2.
Br J Cancer ; 123(1): 81-91, 2020 07.
Article in English | MEDLINE | ID: mdl-32376889

ABSTRACT

BACKGROUND: Liquid biopsy has the potential to monitor biological effects of treatment. KRAS represents the most commonly mutated oncogene in Caucasian non-small-cell lung cancer (NSCLC). The aim of this study was to explore association of dynamic plasma KRAS genotyping with outcome in advanced NSCLC patients. METHODS: Advanced NSCLC patients were prospectively enrolled. Plasma samples were collected at baseline (T1), after 3 or 4 weeks, according to treatment schedule (T2) and at first radiological restaging (T3). Patients carrying KRAS mutation in tissue were analysed in plasma with droplet digital PCR. Semi-quantitative index of fractional abundance of mutated allele (MAFA) was used. RESULTS: KRAS-mutated cohort included 58 patients, and overall 73 treatments (N = 39 chemotherapy and N = 34 immune checkpoint inhibitors) were followed with longitudinal liquid biopsy. Sensitivity of KRAS detection in plasma at baseline was 48.3% (95% confidence interval (CI): 35.0-61.8). KRAS mutation at T2 was associated with increased probability of experiencing progressive disease as best radiological response (adjusted odds ratio: 7.3; 95% CI: 2.1-25.0, p = 0.0016). Increased MAFA (T1-T2) predicted shorter progression-free survival (adjusted hazard ratio (HR): 2.1; 95% CI: 1.2-3.8, p = 0.0142) and overall survival (adjusted HR: 3.2; 95% CI: 1.2-8.4, p = 0.0168). CONCLUSIONS: Longitudinal analysis of plasma KRAS mutations correlated with outcome: its early assessment during treatment has great potentialities for monitoring treatment outcome in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Aged , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , Cohort Studies , Disease Progression , Female , Humans , Male , Middle Aged , Mutation/genetics , Neoplasm Staging
3.
Front Oncol ; 14: 1363069, 2024.
Article in English | MEDLINE | ID: mdl-38529368

ABSTRACT

Epidermal Growth Factor Receptor (EGFR) and B-Raf (BRAF) mutations are two of the most important drivers identified in non-small-cell lung cancer (NSCLC). This report highlights two cases of patients diagnosed with metastatic NSCLC bearing concurrent EGFR and BRAF mutations at baseline and treated with osimertinib as first-line treatment. Molecular profiling was conducted in the tissue and plasma at the time of initial diagnosis, and subsequent repeated liquid biopsy examinations were planned after 10 days, 28 days, and at the time of radiological progression in the frame of the prospective translational study REM. These cases suggest that osimertinib may maintain its therapeutic effectiveness even in patients presenting with a baseline BRAF co-mutation. Notably, radiological responses align with liquid biopsy observations: in both instances, follow-up liquid biopsies indicate the clearance of EGFR-mutated circulating tumor DNA (ctDNA).

4.
Front Oncol ; 10: 607840, 2020.
Article in English | MEDLINE | ID: mdl-33520716

ABSTRACT

BACKGROUND: Molecular profiling of advanced EGFR mutated NSCLC has recently demonstrated the co-existence of multiple genetic alterations. Specifically, co-existing KRAS-mutations in EGFR NSCLCs have been described, despite their prevalence at progression and their role in the response to EGFR tyrosine kinase inhibitors (TKIs) remain marginally explored. Aim of our study was to investigate the prevalence of co-existing KRAS mutations at the time of progressive disease and explore their impact on clinical outcome. MATERIALS AND METHODS: We retrospectively analyzed by digital droplet PCR prevalence of KRAS co-mutations in 106 plasma samples of EGFR mutated NSCLC patients, in progressive disease after EGFR TKI treatment as first-line therapy. RESULTS: KRAS co-mutations (codon 12 and 13) were identified in 3 patients (2.8% of analyzed samples), with low allelic frequency (<0.2%), and had a negative impact on clinical outcome to first-line EGFR TKI. CONCLUSION: Detection of KRAS mutations in cell-free DNA of EGFR mutant NSCLC patients at progression after first or second generation EGFR TKI is a rare event. Due to their low abundance, the negative impact of KRAS mutations on the response to EGFR TKI remains to be confirmed in larger studies.

SELECTION OF CITATIONS
SEARCH DETAIL