Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Genomics ; 19(Suppl 8): 863, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30537923

ABSTRACT

BACKGROUND: Phytophthora infestans is a plant pathogen that causes an important plant disease known as late blight in potato plants (Solanum tuberosum) and several other solanaceous hosts. This disease is the main factor affecting potato crop production worldwide. In spite of the importance of the disease, the molecular mechanisms underlying the compatibility between the pathogen and its hosts are still unknown. RESULTS: To explain the metabolic response of late blight, specifically photosynthesis inhibition in infected plants, we reconstructed a genome-scale metabolic network of the S. tuberosum leaf, PstM1. This metabolic network simulates the effect of this disease in the leaf metabolism. PstM1 accounts for 2751 genes, 1113 metabolic functions, 1773 gene-protein-reaction associations and 1938 metabolites involved in 2072 reactions. The optimization of the model for biomass synthesis maximization in three infection time points suggested a suppression of the photosynthetic capacity related to the decrease of metabolic flux in light reactions and carbon fixation reactions. In addition, a variation pattern in the flux of carboxylation to oxygenation reactions catalyzed by RuBisCO was also identified, likely to be associated to a defense response in the compatible interaction between P. infestans and S. tuberosum. CONCLUSIONS: In this work, we introduced simultaneously the first metabolic network of S. tuberosum and the first genome-scale metabolic model of the compatible interaction of a plant with P. infestans.


Subject(s)
Genome, Plant , Models, Biological , Phytophthora infestans/physiology , Plant Diseases/parasitology , Plant Proteins/metabolism , Solanum tuberosum/physiology , Host-Parasite Interactions , Metabolic Networks and Pathways , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/parasitology , Plant Proteins/genetics , Solanum tuberosum/genetics , Solanum tuberosum/parasitology , Transcriptome
2.
BMC Genomics ; 19(Suppl 8): 859, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30537922

ABSTRACT

BACKGROUND: Latin America harbors some of the most biodiverse countries in the world, including Colombia. Despite the increasing use of cutting-edge technologies in genomics and bioinformatics in several biological science fields around the world, the region has fallen behind in the inclusion of these approaches in biodiversity studies. In this study, we used data mining methods to search in four main public databases of genetic sequences such as: NCBI Nucleotide and BioProject, Pathosystems Resource Integration Center, and Barcode of Life Data Systems databases. We aimed to determine how much of the Colombian biodiversity is contained in genetic data stored in these public databases and how much of this information has been generated by national institutions. Additionally, we compared this data for Colombia with other countries of high biodiversity in Latin America, such as Brazil, Argentina, Costa Rica, Mexico, and Peru. RESULTS: In Nucleotide, we found that 66.84% of total records for Colombia have been published at the national level, and this data represents less than 5% of the total number of species reported for the country. In BioProject, 70.46% of records were generated by national institutions and the great majority of them is represented by microorganisms. In BOLD Systems, 26% of records have been submitted by national institutions, representing 258 species for Colombia. This number of species reported for Colombia span approximately 0.46% of the total biodiversity reported for the country (56,343 species). Finally, in PATRIC database, 13.25% of the reported sequences were contributed by national institutions. Colombia has a better biodiversity representation in public databases in comparison to other Latin American countries, like Costa Rica and Peru. Mexico and Argentina have the highest representation of species at the national level, despite Brazil and Colombia, which actually hold the first and second places in biodiversity worldwide. CONCLUSIONS: Our findings show gaps in the representation of the Colombian biodiversity at the molecular and genetic levels in widely consulted public databases. National funding for high-throughput molecular research, NGS technologies costs, and access to genetic resources are limiting factors. This fact should be taken as an opportunity to foster the development of collaborative projects between research groups in the Latin American region to study the vast biodiversity of these countries using 'omics' technologies.


Subject(s)
Bacteria/genetics , Big Data , Biodiversity , Genomics , Plants/genetics , Animals , Base Sequence , Colombia , Metagenome
3.
Genom Data ; 11: 73-74, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28018855

ABSTRACT

We announce the draft genome sequence of three Gram-negative bacteria isolated from coral tissues affected with the black band disease (BBD), identified with the NCBI's Assembly Database accession numbers: MBQF, MAYB and MBQE. These genome drafts constitute an useful tool for the characterisation of these bacteria and for the understanding of the relationship between the microbial consortia associated with the disease and the onset and progression of the pathology.

SELECTION OF CITATIONS
SEARCH DETAIL