ABSTRACT
The mitochondrial citrate transport protein (CTP), encoded by SLC25A1, accommodates bidirectional trafficking of citrate between the mitochondria and cytosol, supporting lipid biosynthesis and redox homeostasis. Genetic CTP deficiency causes a fatal neurodevelopmental syndrome associated with the accumulation of L- and D-2-hydroxyglutaric acid, and elevated CTP expression is associated with poor prognosis in several types of cancer, emphasizing the importance of this transporter in multiple human pathologies. Here we describe the metabolic consequences of CTP deficiency in cancer cells. As expected from the phenotype of CTP-deficient humans, somatic CTP loss in cancer cells induces broad dysregulation of mitochondrial metabolism, resulting in accumulation of lactate and of the L- and D- enantiomers of 2-hydroxyglutarate (2HG) and depletion of TCA cycle intermediates. It also eliminates mitochondrial import of citrate from the cytosol. To quantify the impact of CTP deficiency on metabolic flux, cells were cultured with a set of 13C-glucose and 13C-glutamine tracers with resulting data integrated by metabolic flux analysis (MFA). CTP-deficient cells displayed a major restructuring of central carbon metabolism, including suppression of pyruvate dehydrogenase (PDH) and induction of glucose-dependent anaplerosis through pyruvate carboxylase (PC). We also observed an unusual lipogenic pathway in which carbon from glucose supplies mitochondrial production of alpha-ketoglutarate (AKG), which is then trafficked to the cytosol and used to supply reductive carboxylation by isocitrate dehydrogenase 1 (IDH1). The resulting citrate is cleaved to produce lipogenic acetyl-CoA, thereby completing a novel pathway of glucose-dependent reductive carboxylation. In CTP deficient cells, IDH1 inhibition suppresses lipogenesis from either glucose or glutamine, implicating IDH1 as a required component of fatty acid synthesis in states of CTP deficiency.
Subject(s)
Anion Transport Proteins/deficiency , Fatty Acids/biosynthesis , Mitochondria/metabolism , Mitochondrial Proteins/deficiency , Neoplasm Proteins , Neoplasms/metabolism , Cell Line, Tumor , Fatty Acids/genetics , Humans , Mitochondria/genetics , Mitochondria/pathology , Neoplasm Proteins/deficiency , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/pathology , Organic Anion TransportersABSTRACT
Upon activation, T cells undergo metabolic reprogramming to meet the bioenergetic demands of clonal expansion and effector function. Because dysregulated T cell cytokine production and metabolic phenotypes coexist in chronic inflammatory disease, including rheumatoid arthritis (RA), we investigated whether inflammatory cytokines released by differentiating T cells amplified their metabolic changes. We found that tumor necrosis factor-α (TNF-α) released by human naïve CD4+ T cells upon activation stimulated the expression of a metabolic transcriptome and increased glycolysis, amino acid uptake, mitochondrial oxidation of glutamine, and mitochondrial biogenesis. The effects of TNF-α were mediated by activation of Akt-mTOR signaling by the kinase ITK and did not require the NF-κB pathway. TNF-α stimulated the differentiation of naïve cells into proinflammatory T helper 1 (TH1) and TH17 cells, but not that of regulatory T cells. CD4+ T cells from patients with RA showed increased TNF-α production and consequent Akt phosphorylation upon activation. These cells also exhibited increased mitochondrial mass, particularly within proinflammatory T cell subsets implicated in disease. Together, these findings suggest that T cell-derived TNF-α drives their metabolic reprogramming by promoting signaling through ITK, Akt, and mTOR, which is dysregulated in autoinflammatory disease.
Subject(s)
Arthritis, Rheumatoid , CD4-Positive T-Lymphocytes , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Tumor Necrosis Factor-alpha , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/genetics , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Tumor Necrosis Factor-alpha/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Mitochondria/metabolism , Metabolic ReprogrammingABSTRACT
Tumor cells often adapt to amino acid deprivation through metabolic rewiring, compensating for the loss with alternative amino acids/substrates. We have described such a scenario in leukemic cells treated with L-asparaginase (ASNase). Clinical effect of ASNase is based on nutrient stress achieved by its dual enzymatic action which leads to depletion of asparagine and glutamine and is accompanied with elevated aspartate and glutamate concentrations in serum of acute lymphoblastic leukemia patients. We showed that in these limited conditions glutamate uptake compensates for the loss of glutamine availability. Extracellular glutamate flux detection confirms its integration into the TCA cycle and its participation in nucleotide and glutathione synthesis. Importantly, it is glutamate-driven de novo synthesis of glutathione which is the essential metabolic pathway necessary for glutamate's pro-survival effect. In vivo findings support this effect by showing that inhibition of glutamate transporters enhances the therapeutic effect of ASNase. In summary, ASNase induces elevated extracellular glutamate levels under nutrient stress, which leads to a rewiring of intracellular glutamate metabolism and has a negative impact on ASNase treatment.
ABSTRACT
Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ß cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ß cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ß cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ß cells to maintain appropriate insulin release.