Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Br J Cancer ; 118(8): 1062-1073, 2018 04.
Article in English | MEDLINE | ID: mdl-29500406

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is the second most common hematologic malignancy. Aberrant epigenetic modifications have been reported in MM and could be promising therapeutic targets. As response rates are overall limited but deep responses occur, it is important to identify those patients who could indeed benefit from epigenetic-targeted therapy. METHODS: Since HDACi and DNMTi combination have potential therapeutic value in MM, we aimed to build a GEP-based score that could be useful to design future epigenetic-targeted combination trials. In addition, we investigated the changes in GEP upon HDACi/DNMTi treatment. RESULTS: We report a new gene expression-based score to predict MM cell sensitivity to the combination of DNMTi/HDACi. A high Combo score in MM patients identified a group with a worse overall survival but a higher sensitivity of their MM cells to DNMTi/HDACi therapy compared to a low Combo score. In addition, treatment with DNMTi/HDACi downregulated IRF4 and MYC expression and appeared to induce a mature BMPC plasma cell gene expression profile in myeloma cell lines. CONCLUSION: In conclusion, we developed a score for the prediction of primary MM cell sensitivity to DNMTi/HDACi and found that this combination could be beneficial in high-risk patients by targeting proliferation and inducing maturation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cellular Reprogramming/drug effects , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/administration & dosage , Multiple Myeloma/drug therapy , Plasma Cells/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Inbred C57BL , Microarray Analysis , Molecular Targeted Therapy/methods , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Plasma Cells/physiology , Research Design , Transcriptome , Tumor Cells, Cultured
2.
Oncotarget ; 8(58): 98931-98944, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29228738

ABSTRACT

Multiple myeloma (MM) is a B cell neoplasia characterized by clonal plasma cell (PC) proliferation. Minimal residual disease monitoring by multi-parameter flow cytometry is a powerful tool for predicting treatment efficacy and MM outcome. In this study, we compared CD antigens expression between normal and malignant plasma cells to identify new potential markers to discriminate normal from malignant plasma cells, new potential therapeutic targets for monoclonal-based treatments and new prognostic factors. Nine genes were significantly overexpressed and 16 were significantly downregulated in MMC compared with BMPC (ratio ≥2; FDR CD24, CD27, CD36 and CD302) was associated with a prognostic value in two independent cohorts of patients with MM (HM cohort and TT2 cohort, n=345). The expression level of these four genes was then used to develop a CD gene risk score that classified patients in two groups with different survival (P = 2.06E-6) in the HM training cohort. The prognostic value of the CD gene risk score was validated in two independent cohorts of patients with MM (TT2 cohort and HOVON65/GMMGHD4 cohort, n=282 patients). The CD gene risk score remained a prognostic factor that separated patients in two groups with significantly different overall survival also when using publicly available data from a cohort of relapsing patients treated with bortezomib (n=188). In conclusion, the CD gene risk score allows identifying high risk patients with MM based on CD24, CD27, CD36 and CD302 expression and could represent a powerful tool for simple outcome prediction in MM.

3.
Oncotarget ; 3(11): 1335-47, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23154454

ABSTRACT

Multiple Myeloma (MM) is an incurable malignant plasma cell disorder. We have evaluated the counts of Multiple Myeloma Cells (MMCs) and normal plasma cells (N-PCs), seven days after high-dose melphalan (HDM) and autologous stem transplantation (ASCT). Two third of patients had detectable minimal residual disease (MRD+) (71.7 MMCs/µL) after induction treatment with dexamethasone and proteasome inhibitor. MMC counts were reduced by 92% (P ≤ .05) but not eradicated 7 days after HDM+ASCT. Post-HDM+ASCT MMCs were viable and bathed in a burst of MMC growth factors, linked with post-HDM aplasia. In one third of patients (MRD- patients), MMCs were not detectable after induction treatment and remained undetectable after HDM+ASCT. Major difference between MRD- and MRD+ patients is that N-PC counts were increased 3 fold (P〈.05) by HDM+ASCT in MRD- patients, but were unaffected in MRD+ patients. Possible explanation could be that clearance of MMCs in MRD- patients makes more niches available for N-PCs. Thus, MMCs are not fully eradicated shortly after HDM, are bathed in high concentrations of MMC growth factors in an almost desert BM, are viable in short-term culture, which suggests providing additional therapies shortly after HDM to kill resistant MMCs before full repair of lesions.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Melphalan/therapeutic use , Multiple Myeloma/blood , Multiple Myeloma/therapy , Plasma Cells/drug effects , Stem Cell Transplantation/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/surgery , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL