Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Genes Dev ; 34(7-8): 544-559, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32079653

ABSTRACT

Excessive reactive oxygen species (ROS) can cause oxidative stress and consequently cell injury contributing to a wide range of diseases. Addressing the critical gaps in our understanding of the adaptive molecular events downstream ROS provocation holds promise for the identification of druggable metabolic vulnerabilities. Here, we unveil a direct molecular link between the activity of two estrogen-related receptor (ERR) isoforms and the control of glutamine utilization and glutathione antioxidant production. ERRα down-regulation restricts glutamine entry into the TCA cycle, while ERRγ up-regulation promotes glutamine-driven glutathione production. Notably, we identify increased ERRγ expression/activation as a hallmark of oxidative stress triggered by mitochondrial disruption or chemotherapy. Enhanced tumor antioxidant capacity is an underlying feature of human breast cancer (BCa) patients that respond poorly to treatment. We demonstrate that pharmacological inhibition of ERRγ with the selective inverse agonist GSK5182 increases antitumor efficacy of the chemotherapeutic paclitaxel on poor outcome BCa tumor organoids. Our findings thus underscore the ERRs as novel redox sensors and effectors of a ROS defense program and highlight the potential therapeutic advantage of exploiting ERRγ inhibitors for the treatment of BCa and other diseases where oxidative stress plays a central role.


Subject(s)
Breast Neoplasms/physiopathology , Drug Resistance, Neoplasm/drug effects , Oxidative Stress , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism , Signal Transduction/physiology , Animals , Antineoplastic Agents/pharmacology , Biosensing Techniques , Breast Neoplasms/drug therapy , Female , Gene Expression Regulation, Neoplastic/drug effects , Glutamine/metabolism , Glutathione/metabolism , Humans , Mice , Oxidative Stress/drug effects , Oxidative Stress/physiology , Paclitaxel/pharmacology , Receptors, Estrogen/genetics , Rotenone/pharmacology , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , ERRalpha Estrogen-Related Receptor
2.
Nat Commun ; 15(1): 3602, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684700

ABSTRACT

Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Mice , Chemoradiotherapy/methods , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Radiation Tolerance , YAP-Signaling Proteins/metabolism , Brain/metabolism , Brain/pathology , Proteomics
3.
Cancers (Basel) ; 13(12)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205341

ABSTRACT

Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients' prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL