Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
MAGMA ; 35(3): 389-399, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34661790

ABSTRACT

OBJECTIVE: To propose a new method of simulating the BOLD contrast using a dynamic, easy to construct and operate, low-cost physical phantom. MATERIALS AND METHODS: A structure of thin pipelines passing through a gel volume was used to simulate blood vessels in human tissue. Quantitative T2*, R2* measurements were used to study the signal change of the phantom. BOLD fMRI experiments and analysis were performed to evaluate its potential use as an fMRI simulator. RESULTS: Experimental T2*, R2* measurements showed similar behavior with published references. BOLD contrast was successfully achieved with the proposed method. In addition, there were several proposed parameters, like the angle of the phantom relative to B0, which can easily adjust the signal change and the activation area. Coefficients of variation showed good reproducibility within a month period. Statistical t maps were produced with in-house software for the BOLD measurements. DISCUSSION: T2*maps and BOLD images confirm the potential use of this phantom as an fMRI simulator and also as a tool for studying sensitivity and specificity of BOLD sequences/algorithms.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Algorithms , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Oxygen , Phantoms, Imaging , Reproducibility of Results
2.
J Appl Clin Med Phys ; 23(3): e13518, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34994101

ABSTRACT

Online magnetic resonance (MR)-guided radiotherapy is expected to benefit brain stereotactic radiosurgery (SRS) due to superior soft tissue contrast and capability of daily adaptive planning. The purpose of this study was to investigate daily adaptive plan quality with setup variations and to perform an end-to-end test for brain SRS with multiple metastases treated with a 1.5-Tesla MR-Linac (MRL). The RTsafe PseudoPatient Prime brain phantom was used with a delineation insert that includes two predefined structures mimicking gadolinium contrast-enhanced brain lesions. Daily adaptive plans were generated using six preset and six random setup variations. Two adaptive plans per daily MR image were generated using the adapt-to-position (ATP) and adapt-to-shape (ATS) workflows. An adaptive patient plan was generated on a diagnostic MR image with simulated translational and rotational daily setup variation and was compared with the reference plan. All adaptive plans were compared with the reference plan using the target coverage, Paddick conformity index, gradient index (GI), Brain V12 or V20, optimization time and total monitor units. Target doses were measured as an end-to-end test with two ionization chambers inserted into the phantom. With preset translational variations, V12 from the ATS plan was 17% lower than that of the ATP plan. With a larger daily setup variation, GI and V12 of the ATS plan were 10% and 16% lower than those of the ATP plan, respectively. Compared to the ATP plans, the plan quality index of the ATS plans was more consistent with the reference plan, and within 5% in both phantom and patient plans. The differences between the measured and planned target doses were within 1% for both treatment workflows. Treating brain SRS using an MRL is feasible and could achieve satisfactory dosimetric goals. Setup uncertainties could be accounted for using online plan adaptation. The ATS workflow achieved better dosimetric results than the ATP workflow at the cost of longer optimization time.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Brain , Humans , Particle Accelerators , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
3.
J Appl Clin Med Phys ; 21(9): 278-285, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32786141

ABSTRACT

The Gamma Knife Icon allows the treatment of brain tumors mask-based single-fraction or fractionated treatment schemes. In clinic, uniform axial expansion of 1 mm around the gross tumor volume (GTV) and a 1.5 mm expansion in the superior and inferior directions are used to generate the planning target volume (PTV). The purpose of the study was to validate this margin scheme with two clinical scenarios: (a) the patient's head remaining right below the high-definition motion management (HDMM) threshold, and (b) frequent treatment interruptions followed by plan adaptation induced by large pitch head motion. A remote-controlled head assembly was used to control the motion of a PseudoPatient® Prime head phantom; for dosimetric evaluations, an ionization chamber, EBT3 films, and polymer gels were used. These measurements were compared with those from the Gamma Knife plan. For the absolute dose measurements using an ionization chamber, the percentage differences for both targets were less than 3.0% for all scenarios, which was within the expected tolerance. For the film measurements, the two-dimensional (2D) gamma index with a 2%/2 mm criterion showed the passing rates of ≥87% in all scenarios except the scenario 1. The results of Gel measurements showed that GTV (D100 ) was covered by the prescription dose and PTV (D95 ) was well above the planned dose by up to 5.6% and the largest geometric PTV offset was 0.8 mm for all scenarios. In conclusion, the current margin scheme with HDMM setting is adequate for a typical patient's intrafractional motion.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Humans , Motion , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
4.
Neuroimage ; 152: 482-496, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28323166

ABSTRACT

We used fMRI to assess the human brain areas activated for execution, observation and 1st person motor imagery of a visually guided tracing task with the index finger. Voxel-level conjunction analysis revealed several cortical areas activated in common across all three motor conditions, namely, the upper limb representation of the primary motor and somatosensory cortices, the dorsal and ventral premotor, the superior and inferior parietal cortices as well as the posterior part of the superior and middle temporal gyrus including the temporo-parietal junction (TPj) and the extrastriate body area (EBA). Functional connectivity analyses corroborated the notion that a common sensory-motor fronto-parieto-temporal cortical network is engaged for execution, observation, and imagination of the very same action. Taken together these findings are consistent with the more parsimonious account of motor cognition provided by the mental simulation theory rather than the recently revised mirror neuron view Action imagination and observation were each associated with several additional functional connections, which may serve the distinction between overt action and its covert counterparts, and the attribution of action to the correct agent. For example, the central position of the right middle and inferior frontal gyrus in functional connectivity during motor imagery may reflect the suppression of movements during mere imagination of action, and may contribute to the distinction between 'imagined' and 'real' action. Also, the central role of the right EBA in observation, assessed by functional connectivity analysis, may be related to the attribution of action to the 'external agent' as opposed to the 'self'.


Subject(s)
Brain/physiology , Imagination , Movement , Psychomotor Performance , Adult , Brain Mapping , Female , Fingers , Humans , Magnetic Resonance Imaging , Male
5.
Tomography ; 7(3): 333-343, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34449739

ABSTRACT

Blood Oxygen Level Dependent (BOLD) is a commonly-used MR imaging technique in studying brain function. The BOLD signal can be strongly affected by specific sequence parameters, especially in small field strengths. Previous small-scale studies have investigated the effect of TE on BOLD contrast. This study evaluates the dependence of fMRI results on echo time (TE) during concurrent activation of the visual and motor cortex at 1.5 T in a larger sample of 21 healthy volunteers. The experiment was repeated using two different TE values (50 and 70 ms) in counterbalanced order. Furthermore, T2* measurements of the gray matter were performed. Results indicated that both peak beta value and number of voxels were significantly higher using TE = 70 than TE = 50 ms in primary motor, primary somatosensory and supplementary motor cortices (p < 0.007). In addition, the amplitude of activation in visual cortices and the dorsal premotor area was also higher using TE = 70 ms (p < 0.001). Gray matter T2* of the corresponding areas did not vary significantly. In conclusion, the optimal TE value (among the two studied) for visual and motor activity is 70 ms affecting both the amplitude and extent of regional hemodynamic activation.


Subject(s)
Motor Cortex , Neurochemistry , Visual Cortex , Humans , Magnetic Resonance Imaging , Motor Cortex/diagnostic imaging , Visual Cortex/diagnostic imaging
6.
Phys Med ; 73: 179-189, 2020 May.
Article in English | MEDLINE | ID: mdl-32371141

ABSTRACT

PURPOSE: The aim of this study is to introduce a novel DWI-MRI phantom and to compare Apparent Diffusion Coefficient (ADC) measurements, utilizing EPI-DWI and HASTE-DWI sequences and two different fitting algorithms. MATERIALS AND METHODS: 23 test tubes with different sucrose concentrations and polyacrylamide gels were used as a phantom for ADC measurements. The phantom was scanned on a clinical MRI system (1.5 T) over a two-month period utilizing an EPI-DWI and a HASTE-DWI sequence. ADC maps were calculated using a Weighted Linear (WL) and a Non Linear (NL) fitting algorithm. Measurements were performed with two sequences and two fitting algorithms. Geometric Distortions (GD), Ghosting Ratios (GR) and Signal to Structured Noise Ratios (SSNRs) were estimated using both sequences from the resultant ADC parametric maps. RESULTS: Polyacrylamide gels reveal lower coefficient of variation (CV%) as compared to sucrose solutions. ADC measurements performed with WL and NL algorithms reveal identical results with both sequences. WL and NL algorithms require approx. 3 s and 7 min respectively, for a single slice. EPI-DWI reveals a mean percent ADC value difference of (+4.5%) as compared to HASTE-DWI, regardless the type of fitting algorithm. CONCLUSION: Polyacrylamide gels can serve as a better means for simulating ADC values, compared with sucrose solutions used in this study. WL can be proposed as the method for ADC measurements in daily clinical practice. WL is significantly faster than NL fitting method and equally precise. SSNR measured directly on ADC maps is an excellent means for testing the precision of ADC measurements.


Subject(s)
Diffusion Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Linear Models
SELECTION OF CITATIONS
SEARCH DETAIL