Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 91(5): 053601, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12906596

ABSTRACT

We consider the creation of polarization entangled light from parametric down-conversion driven by an intense pulsed pump field inside a cavity. The multiphoton states produced are close approximations to singlet states of two very large spins. A criterion is derived to quantify the entanglement of such states. We study the dynamics of the system in the presence of losses and other imperfections, concluding that the creation of strongly entangled states with photon numbers up to a million seems achievable.

2.
Phys Rev Lett ; 88(18): 187902, 2002 May 06.
Article in English | MEDLINE | ID: mdl-12005723

ABSTRACT

Multiphoton states from parametric down-conversion can be entangled both in polarization and photon number. Maximal high-dimensional entanglement can be concentrated postselectively from these states via photon counting. This makes them natural candidates for quantum key distribution, where the presence of more than one photon per detection interval has up to now been considered undesirable. We propose a simple multiphoton cryptography protocol for the case of low losses.

3.
Phys Rev Lett ; 91(13): 130401, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-14525288

ABSTRACT

We propose an experiment for creating quantum superposition states involving of the order of 10(14) atoms via the interaction of a single photon with a tiny mirror. This mirror, mounted on a high-quality mechanical oscillator, is part of a high-finesse optical cavity which forms one arm of a Michelson interferometer. By observing the interference of the photon only, one can study the creation and decoherence of superpositions involving the mirror. A detailed analysis of the requirements shows that the experiment is within reach using a combination of state-of-the-art technologies.

4.
Phys Rev Lett ; 88(3): 030401, 2002 Jan 21.
Article in English | MEDLINE | ID: mdl-11801048

ABSTRACT

We demonstrate the experimental violation of a spin-1 Bell inequality. The spin-1 inequality is based on the Clauser, Horne, Shimony, and Holt formalism. For entangled spin-1 particles, the maximum quantum-mechanical prediction is 2.55 as opposed to a maximum of 2, predicted using local hidden variables. We obtained an experimental value of 2.27+/-0.02 using the four-photon state generated by pulsed, type-II, stimulated parametric down-conversion. This is a violation of the spin-1 Bell inequality by more than 13 standard deviations.

5.
Science ; 296(5568): 712-4, 2002 Apr 26.
Article in English | MEDLINE | ID: mdl-11923493

ABSTRACT

Although perfect copying of unknown quantum systems is forbidden by the laws of quantum mechanics, approximate cloning is possible. A natural way of realizing quantum cloning of photons is by stimulated emission. In this context, the fundamental quantum limit to the quality of the clones is imposed by the unavoidable presence of spontaneous emission. In our experiment, a single input photon stimulates the emission of additional photons from a source on the basis of parametric down-conversion. This leads to the production of quantum clones with near-optimal fidelity. We also demonstrate universality of the copying procedure by showing that the same fidelity is achieved for arbitrary input states.

SELECTION OF CITATIONS
SEARCH DETAIL