Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Chemistry ; 22(2): 496-500, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26601641

ABSTRACT

Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material.


Subject(s)
Alkynes/chemistry , Azides/chemistry , Copper/chemistry , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Nanowires/chemistry , Peptides/chemistry , Biological Evolution , Catalysis , Click Chemistry , Cycloaddition Reaction , Green Fluorescent Proteins/metabolism , Protein Binding
2.
Nano Lett ; 15(3): 1849-54, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25692804

ABSTRACT

The discovery of two-dimensional electron gases (2DEGs) in SrTiO3-based heterostructures provides new opportunities for nanoelectronics. Herein, we create a new type of oxide 2DEG by the epitaxial-strain-induced polarization at an otherwise nonpolar perovskite-type interface of CaZrO3/SrTiO3. Remarkably, this heterointerface is atomically sharp and exhibits a high electron mobility exceeding 60,000 cm(2) V(-1) s(-1) at low temperatures. The 2DEG carrier density exhibits a critical dependence on the film thickness, in good agreement with the polarization induced 2DEG scheme.

3.
Chembiochem ; 16(5): 782-91, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25737226

ABSTRACT

Stable primary functionalization of metal surfaces plays a significant role in reliable secondary attachment of complex functional molecules used for the interfacing of metal objects and nanomaterials with biological systems. In principle, this can be achieved through chemical reactions either in the vapor or liquid phase. In this work, we compared these two methods for oxidized silicon surfaces and thoroughly characterized the functionalization steps by tagging and fluorescence imaging. We demonstrate that the vapor-phase functionalization only provided transient surface modification that was lost on extensive washing. For stable surface modification, a liquid-phase method was developed. In this method, silicon wafers were decorated with azides, either by silanization with (3-azidopropyl)triethoxysilane or by conversion of the amine groups of an aminopropylated surface by means of the azido-transfer reaction. Subsequently, D-amino acid adhesion peptides could be immobilized on the surface by use of Cu(I)-catalyzed click chemistry. This enabled the study of cell adhesion to the metal surface. In contrast to unmodified surfaces, the peptide-modified surfaces were able to maintain cell adhesion during significant flow velocities in a microflow reactor.


Subject(s)
Alkynes/chemistry , Azides/chemistry , Copper/chemistry , Silicon/chemistry , Catalysis , Cell Adhesion , Cyclization , Fluorescence , HEK293 Cells , Humans , Molecular Structure , Surface Properties
4.
Soft Matter ; 11(39): 7707-11, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26325086

ABSTRACT

Here, we bind the sodium dependent amino acid transporter on nitrilotriacetic acid/polyethylene glycol functionalized gold sensors in detergents and perform a detergent-lipid exchange with phosphatidylcholine. We characterize the LeuT structure in the adsorbed film by magnetic contrast neutron reflection using the predicted model from molecular dynamic simulations.


Subject(s)
Amino Acid Transport Systems/metabolism , Molecular Dynamics Simulation , Amino Acid Transport Systems/chemistry , Detergents/chemistry , Gold/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Nitrilotriacetic Acid/chemistry , Phosphatidylcholines/chemistry , Polyethylene Glycols/chemistry , Quartz Crystal Microbalance Techniques , Sodium/chemistry
5.
J Hazard Mater ; 466: 133546, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38271875

ABSTRACT

This study examines the transport and retention of colloidal particles and heavy ions in porous sand, focusing on the environmental risks associated with waste from oil and gas drilling. Experimental and numerical models assess the influence of flow rate, external filter cake layer, and ionic strength on bentonite clay particles and heavy ions, such as cadmium (Cd) and lead (Pb), in near-wellbore (high-flux) and far-field (low-flux) scenarios. Colloidal filtration theory and the one-dimensional convection-dispersion equation with two-site kinetic model for attachment and detachment were utilized to calibrate and predict the transport of colloidal suspension in porous media. The research investigates the role of internal and external filter cakes on sand column pressure distribution and heavy ion absorption. Results indicate that the mobility of colloids and heavy ions is influenced by the ionic strength and pH of the carrying fluid. Colloidal clay suspensions show a higher affinity for Pb (II) absorption, while Cd (II) exhibits increased mobility in both clean sand and colloidal environments. Notably, the formation of an external filter cake significantly delays the breakthrough of heavy ions, up to four times longer than in clean sand, and reduces Cd (II) and Pb (II) outlet concentrations by 86% and 93%, respectively. This cake also limits clay concentration and particle size passage. High clay concentrations or injections under high ionic conditions induce clay bridging in pore throats, enhancing internal filtration and heavy ion retention. Conversely, low clay fluxes allow freer particle passage, increasing heavy ion loads and outlet concentrations.

7.
Langmuir ; 28(8): 4016-23, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22283520

ABSTRACT

Cruciform oligo(phenylene ethynylene)s (OPEs) with an extended tetrathiafulvalene (TTF) donor moiety (OPE5-TTF and OPE3-TTF) and their simple analogues (OPE5-S and OPE3) without conjugated substituents were used to form high-quality self-assembled monolayers (SAMs) on ultraflat gold substrates. Molecular junctions based on these SAMs were investigated using conducting-probe atomic force microscopy (CP-AFM). The TTF substituent changes the molecular orbital energy levels and decreases the HOMO-LUMO energy gap, resulting in a 9-fold increase in conductance for both TTF cruciform OPEs compared to the unsubstituted analogues. The difference in electrical transport properties of the SAMs was reproduced by the theoretical transport calculations for the single molecules.

8.
Environ Sci Pollut Res Int ; 27(19): 23801-23811, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32301076

ABSTRACT

Hydrotalcite-like compounds are a group of layered double hydroxides widely studied as sorbents to remove organic and inorganic contaminants under laboratory conditions. This study is a proof-of-concept of the long-term fate of hydrotalcite compounds under natural environmental conditions, to bridge the gap between laboratory studies and their field application as sorbents. Hydrotalcite (HT) with intercalated carbonate species (HT-CO3) and dodecyl sulphate (HT-DS) were synthesised and placed in two groundwater monitoring wells in Denmark, one contaminated with chlorinated hydrocarbons and another with uncontaminated groundwater. To assess the structural and surface compositional changes of hydrotalcite compounds upon prolonged exposure to groundwater, the material was analysed with powder X-ray diffraction (PXRD), Fourier-transformed infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results showed that the stability and dissolution behaviour of hydrotalcite compounds under groundwater conditions depended on the intercalated anion (CO32- > DS) and groundwater dynamics (static flow > dynamic flow), while the hydrotalcite aggregate size only had a minor effect. Groundwater geochemistry influenced the precipitation of insoluble species (CaCO3, and adsorbed sulphate) on the hydrotalcite surface. The instability of hydrotalcite compounds, especially in the case of HT-DS, may constitute a significant limiting factor on their future application as sorbents under dynamic flow conditions.


Subject(s)
Aluminum Hydroxide , Magnesium Hydroxide , Hydroxides , Spectroscopy, Fourier Transform Infrared
9.
Lab Chip ; 19(5): 798-806, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30688958

ABSTRACT

Polymeric microfluidic chips offer a number of benefits compared to their glass equivalents, including lower material costs and ease and flexibility of fabrication. However, the main drawback of polymeric materials is often their limited resistance to (organic) solvents. Previously, thiol-ene materials were shown to be more solvent resistant than most other commonly used polymers; however, they still fall short in "harsh" chemical environments, such as when chlorinated solvents are present. Here, we show that a simple yet effective treatment of thiol-ene materials results in exceptional solvent compatibility, even for very challenging chemical environments. Our approach, based on a temperature treatment, results in a 50-fold increase in the chloroform compatibility of thiol-enes (in terms of longevity). We show that prolonged heat exposure allows for the operation of the microfluidic chips in chloroform for several days with no discernable deformation or solvent-induced swelling. The method is applicable to many different thiol-ene-based materials, including commercially available formulations, and also when using other commonly considered "harsh" solvents. To demonstrate the utility of the solvent compatible thiol-enes for applications where chloroform is frequently employed, we show the continuous and uniform production of polymeric microspheres for drug delivery purposes over a period of 8 hours. The material thus holds great promise as an alternative choice for microfluidic applications requiring harsh chemical environments, a domain so far mainly restricted to glass chips.

10.
J Phys Chem B ; 111(33): 10005-11, 2007 Aug 23.
Article in English | MEDLINE | ID: mdl-17661515

ABSTRACT

Through the application of optically active second-harmonic generation measurements (OA-SHG) we have demonstrated that the adsorption of amino acids cysteine (HSCH(2)CHNH(2)COOH) and penicillamine (HSC(CH3)(2)CHNH(2)COOH) from solution can induce chiral electronic states in an initially achiral polycrystalline Au film. The chiral induction is strongly dependent upon the pH of the deposition solution; adsorption of penicillamine and cysteine under acidic conditions (pH = 3) induces the same level of optical activity, whereas at pH = 11, the optical activity induced by cysteine is reduced by ca. 50% and penicillamine does not induce optical activity at all. The pH dependence indicates that the presence of interadsorbate hydrogen bonds, and consequently the supramolecular assembly of the adsorbates, facilitates the induction of chiral electronic states in the Au surface. This observation demonstrates that the symmetry properties of the extended structure of the self-assembled layer, and not the local adsorption geometry of the isolated adsorbed moiety, play the lead role in the induction of chiral metallic electronic states. The dependence of the chiral induction on COOH groups is identical to that observed in studies of optical activity in chiral thiol-protected nanoparticles, suggesting a common mechanism for the chiral perturbation in extended films and nanoparticles.

11.
Biomaterials ; 78: 20-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26646624

ABSTRACT

Graphene oxide (GO) is believed to become applicable in biomedical products and medicine, thereby necessitating appropriate safety evaluation dependent on their applications and the route of administration. We have examined the effect of GO form (in solution versus immobilized) and oxidation state on two related elements of innate immunity: the complement system and interleukin-6 (IL-6) release in human blood. In solution, there was a decrease in GO-mediated complement activation with decreasing surface oxygen content (and altered oxygen functionality), whereas with immobilized GO complement response were reversed and increased with decreasing oxygen content. GO solutions, at concentrations below complement activating threshold, did not induce IL-6 release from human blood leukocytes, and further dampened lipopolysaccharide-induced IL-6 release in the whole blood. The latter effect became more profound with GO's having higher oxygen content. This protective role of GO solutions, however, disappeared at higher concentrations above complement-activating threshold. We discuss these results in relation to GO surface structure and properties, and implications for local administration and development of GO-based implantable devices.


Subject(s)
Complement System Proteins/chemistry , Graphite/chemistry , Complement Activation , Humans , Microscopy, Atomic Force , Oxidation-Reduction , Oxides/chemistry , Photoelectron Spectroscopy , Solubility , Surface Properties
12.
Adv Mater ; 25(3): 405-9, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-22903744

ABSTRACT

Cruciform motifs with two orthogonally oriented π-extended tetrathiafulvalenes and with differently protected thiolate end-groups are synthesized by stepwise coupling reactions. The molecules are subjected to single-molecule conductivity studies in a break-junction and to conducting probe atomic force microscopy studies in a self-assembled monolayer on gold.

13.
Adv Mater ; 25(30): 4164-70, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23765569

ABSTRACT

A new type of solid-state molecular junction is introduced, which employs reduced graphene oxide as a transparent top contact that permits a self-assembled molecular monolayer to be photoswitched in situ, while simultaneously enabling charge-transport measurements across the molecules. The electrical switching behavior of a less-studied molecular switch, dihydroazulene/vinylheptafulvene, is described, which is used as a test case.


Subject(s)
Graphite/chemistry , Membranes, Artificial , Microelectrodes , Signal Processing, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis , Graphite/radiation effects , Light , Materials Testing , Oxides/chemistry , Oxides/radiation effects
14.
Adv Mater ; 24(10): 1333-9, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22311594

ABSTRACT

A novel method using solution-processed ultrathin chemically derived graphene films as soft top contacts for the non-destructive fabrication of molecular junctions is demonstrated. We believe this protocol will greatly enrich the solid-state test beds for molecular electronics due to its low-cost, easy-processing and flexible nature.


Subject(s)
Electrical Equipment and Supplies , Graphite/chemistry , Electron Transport , Solutions
15.
J Food Sci ; 76(5): E405-12, 2011.
Article in English | MEDLINE | ID: mdl-22417431

ABSTRACT

UNLABELLED: Addition of wheat bran to flours modifies their expansion properties after cooking extrusion. This can be attributed to changes in the melt shear viscosity at the die. The effect of wheat bran concentration added to achieve 2 levels of dietary fibers of 12. 6% and 24.4%, and process conditions on the shear viscosity of wheat flour was therefore assessed using an online twin-slit rheometer. The shear viscosity measured at 30 s⁻¹ ranged from 9.5 × 10³ to 53.4 × 10³ Pa s. Regardless of the process conditions and bran concentration, the extruded melts showed a pseudoplastic behavior with a power law index n ranging from 0.05 to 0.27. Increasing the barrel temperature of the extruder from 120 to 180 °C, the water content from 18% to 22% or the screw speed from 400 to 800 rpm significantly decreased the melt shear viscosity at the extruder exit. The addition of bran significantly increased the melt shear viscosity only at the highest bran concentration. The effect was process condition dependant. Mathematical interpretations, based upon observations, of the experimental data were carried out. They can be used to predict the effect of the process conditions on the melt shear viscosity at the die of extruded wheat flour with increasing bran concentration. The viscosity data will be applied in future works to study the expansion properties of extruded wheat flour supplemented with bran. PRACTICAL APPLICATION: Incorporation of wheat bran, a readily available and low cost by-product, in extruded puffed foods is constrained due to its negative effect on the product texture. Understanding the effect of wheat bran on rheological properties of extruded melts, driving the final product properties, is essential to provide solutions to the food industry and enhance its use.


Subject(s)
Cooking/methods , Dietary Fiber/analysis , Food Additives/chemistry , Starch/chemistry , Viscosity , Flour , Rheology/methods , Temperature , Triticum/chemistry , Water
16.
Nat Nanotechnol ; 3(4): 289-33, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18654509

ABSTRACT

Transition metal oxides exhibit a rich collection of electronic properties and have many practical applications in areas such as catalysis and ultra-high-density magnetic data storage. Therefore the development of switchable molecular transition metal oxides has potential for the engineering of single-molecule devices and nanoscale electronics. At present, the electronic properties of transition metal oxides can only be tailored through the irreversible introduction of dopant ions, modifying the electronic structure by either injecting electrons or core holes. Here we show that a molybdenum(VI) oxide 'polyoxometalate' molecular nanocluster containing two embedded redox agents is activated by a metallic surface and can reversibly interconvert between two electronic states. Upon thermal activation two electrons are ejected from the active sulphite anions and delocalized over the metal oxide cluster cage, switching it from a fully oxidized state to a two-electron reduced state along with the concomitant formation of an S-S bonding interaction between the two sulphur centres inside the cluster shell.


Subject(s)
Models, Chemical , Molybdenum/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Tungsten Compounds/chemistry , Computer Simulation , Electron Transport , Electrons , Macromolecular Substances , Materials Testing , Nanostructures/ultrastructure , Oxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL