ABSTRACT
To examine the potential for respiratory transmission of rotavirus, we systematically assessed if rotavirus RNA is detectable by real-time quantitative reverse transcription-polymerase chain reaction from nasal and oropharyngeal swab specimens of Bangladeshi children with acute rotavirus gastroenteritis. Forehead swabs were collected to assess skin contamination. Among 399 children aged <2 years hospitalized for gastroenteritis during peak rotavirus season, rotavirus RNA was detected in stool, oral, nasal and forehead swab specimens of 354 (89%). A subset was genotyped; genotype was concordant within a child's specimen set and several different genotypes were detected across children. These findings support possible respiratory transmission of rotavirus and warrant further investigation.
Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus , Child , Humans , Infant , Rotavirus/genetics , Rotavirus Infections/epidemiology , Feces , Genotype , RNAABSTRACT
BACKGROUND: Rotavirus is a leading cause of severe pediatric gastroenteritis; 2 highly effective vaccines are used in the United States (US). We aimed to identify correlates of immune response to rotavirus vaccination in a US cohort. METHODS: Pediatric Respiratory and Enteric Virus Acquisition and Immunogenesis Longitudinal (PREVAIL) is a birth cohort of 245 mother-child pairs enrolled in 2017-2018 and followed for 2 years. Infant stool samples and symptom information were collected weekly. Shedding was defined as reverse-transcription polymerase chain reaction detection of rotavirus vaccine virus in stools collected 4-28 days after dose 1. Seroconversion was defined as a 3-fold rise in immunoglobulin A between the 6-week and 6-month blood draws. Correlates were analyzed using generalized estimating equations and logistic regression. RESULTS: Prevaccination immunoglobulin G (IgG) (odds ratio [OR], 0.84 [95% confidence interval {CI}, .75-.94] per 100-unit increase) was negatively associated with shedding. Shedding was also less likely among infants with a single-nucleotide polymorphism inactivating FUT2 antigen secretion ("nonsecretors") with nonsecretor mothers, versus all other combinations (OR, 0.37 [95% CI, .16-.83]). Of 141 infants with data, 105 (74%) seroconverted; 78 (77%) had shed vaccine virus following dose 1. Prevaccination IgG and secretor status were significantly associated with seroconversion. Neither shedding nor seroconversion significantly differed by vaccine product. CONCLUSIONS: In this US cohort, prevaccination IgG and maternal and infant secretor status were associated with rotavirus vaccine response.
Subject(s)
Antibodies, Viral , Feces , Immunoglobulin G , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Seroconversion , Virus Shedding , Humans , Infant , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Female , Male , United States , Antibodies, Viral/blood , Rotavirus/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Feces/virology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin A/blood , Immunoglobulin A/immunology , Cohort Studies , Longitudinal Studies , Birth Cohort , Adult , VaccinationABSTRACT
BACKGROUND: Previously studied risk factors for rotavirus vaccine failure have not fully explained reduced rotavirus vaccine effectiveness in low-income settings. We assessed the relationship between histo-blood group antigen (HBGA) phenotypes and clinical rotavirus vaccine failure among children <2 years of age participating in the Vaccine Impact on Diarrhea in Africa Study in 3 sub-Saharan African countries. METHODS: Saliva was collected and tested for HBGA phenotype in children who received rotavirus vaccine. The association between secretor and Lewis phenotypes and rotavirus vaccine failure was examined overall and by infecting rotavirus genotype using conditional logistic regression in 218 rotavirus-positive cases with moderate-to-severe diarrhea and 297 matched healthy controls. RESULTS: Both nonsecretor and Lewis-negative phenotypes (null phenotypes) were associated with decreased rotavirus vaccine failure across all sites (matched odds ratio, 0.30 [95% confidence interval: 0.16-0.56] or 0.39 [0.25-0.62], respectively]. A similar decrease in risk against rotavirus vaccine failure among null HBGA phenotypes was observed for cases with P[8] and P[4] infection and their matched controls. While we found no statistically significant association between null HBGA phenotypes and vaccine failure among P[6] infections, the matched odds ratio point estimate for Lewis-negative individuals was >4. CONCLUSIONS: Our study demonstrated a significant relationship between null HBGA phenotypes and decreased rotavirus vaccine failure in a population with P[8] as the most common infecting genotype. Further studies are needed in populations with a large burden of P[6] rotavirus diarrhea to understand the role of host genetics in reduced rotavirus vaccine effectiveness.
Subject(s)
Blood Group Antigens , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Blood Group Antigens/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Gambia , Kenya/epidemiology , Mali/epidemiology , Diarrhea/epidemiology , Diarrhea/prevention & control , Rotavirus/genetics , PhenotypeABSTRACT
Monkeypox (mpox) is a serious viral zoonosis endemic in west and central Africa. An unprecedented global outbreak was first detected in May 2022. CDC activated its emergency outbreak response on May 23, 2022, and the outbreak was declared a Public Health Emergency of International Concern on July 23, 2022, by the World Health Organization (WHO),* and a U.S. Public Health Emergency on August 4, 2022, by the U.S. Department of Health and Human Services. A U.S. government response was initiated, and CDC coordinated activities with the White House, the U.S. Department of Health and Human Services, and many other federal, state, and local partners. CDC quickly adapted surveillance systems, diagnostic tests, vaccines, therapeutics, grants, and communication systems originally developed for U.S. smallpox preparedness and other infectious diseases to fit the unique needs of the outbreak. In 1 year, more than 30,000 U.S. mpox cases were reported, more than 140,000 specimens were tested, >1.2 million doses of vaccine were administered, and more than 6,900 patients were treated with tecovirimat, an antiviral medication with activity against orthopoxviruses such as Variola virus and Monkeypox virus. Non-Hispanic Black (Black) and Hispanic or Latino (Hispanic) persons represented 33% and 31% of mpox cases, respectively; 87% of 42 fatal cases occurred in Black persons. Sexual contact among gay, bisexual, and other men who have sex with men (MSM) was rapidly identified as the primary risk for infection, resulting in profound changes in our scientific understanding of mpox clinical presentation, pathogenesis, and transmission dynamics. This report provides an overview of the first year of the response to the U.S. mpox outbreak by CDC, reviews lessons learned to improve response and future readiness, and previews continued mpox response and prevention activities as local viral transmission continues in multiple U.S. jurisdictions (Figure).
Subject(s)
Mpox (monkeypox) , Sexual and Gender Minorities , Male , Humans , United States/epidemiology , Homosexuality, Male , Mpox (monkeypox)/epidemiology , Disease Outbreaks/prevention & control , Centers for Disease Control and Prevention, U.S.ABSTRACT
BACKGROUND: Estimates of rotavirus vaccine effectiveness (VE) in the United States appear higher in years with more rotavirus activity. We hypothesized rotavirus VE is constant over time but appears to vary as a function of temporal variation in local rotavirus cases and/or misclassified diagnoses. METHODS: We analyzed 6 years of data from eight US surveillance sites on 8- to 59-month olds with acute gastroenteritis symptoms. Children's stool samples were tested via enzyme immunoassay (EIA); rotavirus-positive results were confirmed with molecular testing at the US Centers for Disease Control and Prevention. We defined rotavirus gastroenteritis cases by either positive on-site EIA results alone or positive EIA with Centers for Disease Control and Prevention confirmation. For each case definition, we estimated VE against any rotavirus gastroenteritis, moderate-to-severe disease, and hospitalization using two mixed-effect regression models: the first including year plus a year-vaccination interaction, and the second including the annual percent of rotavirus-positive tests plus a percent positive-vaccination interaction. We used multiple overimputation to bias-adjust for misclassification of cases defined by positive EIA alone. RESULTS: Estimates of annual rotavirus VE against all outcomes fluctuated temporally, particularly when we defined cases by on-site EIA alone and used a year-vaccination interaction. Use of confirmatory testing to define cases reduced, but did not eliminate, fluctuations. Temporal fluctuations in VE estimates further attenuated when we used a percent positive-vaccination interaction. Fluctuations persisted until bias-adjustment for diagnostic misclassification. CONCLUSIONS: Both controlling for time-varying rotavirus activity and bias-adjusting for diagnostic misclassification are critical for estimating the most valid annual rotavirus VE.
Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Child , Gastroenteritis/diagnosis , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Hospitalization , Humans , Infant , Rotavirus Infections/diagnosis , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , United States/epidemiology , Vaccination , Vaccine Efficacy , Vaccines, AttenuatedABSTRACT
BACKGROUND: To address high COVID-19 burden in U.S. nursing homes, rapid SARS-CoV-2 antigen tests have been widely distributed in those facilities. However, performance data are lacking, especially in asymptomatic people. OBJECTIVE: To evaluate the performance of SARS-CoV-2 antigen testing when used for facility-wide testing during a nursing home outbreak. DESIGN: A prospective evaluation involving 3 facility-wide rounds of testing where paired respiratory specimens were collected to evaluate the performance of the BinaxNOW antigen test compared with virus culture and real-time reverse transcription polymerase chain reaction (RT-PCR). Early and late infection were defined using changes in RT-PCR cycle threshold values and prior test results. SETTING: A nursing home with an ongoing SARS-CoV-2 outbreak. PARTICIPANTS: 532 paired specimens collected from 234 available residents and staff. MEASUREMENTS: Percentage of positive agreement (PPA) and percentage of negative agreement (PNA) for BinaxNOW compared with RT-PCR and virus culture. RESULTS: BinaxNOW PPA with virus culture, used for detection of replication-competent virus, was 95%. However, the overall PPA of antigen testing with RT-PCR was 69%, and PNA was 98%. When only the first positive test result was analyzed for each participant, PPA of antigen testing with RT-PCR was 82% among 45 symptomatic people and 52% among 343 asymptomatic people. Compared with RT-PCR and virus culture, the BinaxNOW test performed well in early infection (86% and 95%, respectively) and poorly in late infection (51% and no recovered virus, respectively). LIMITATION: Accurate symptom ascertainment was challenging in nursing home residents; test performance may not be representative of testing done by nonlaboratory staff. CONCLUSION: Despite lower positive agreement compared with RT-PCR, antigen test positivity had higher agreement with shedding of replication-competent virus. These results suggest that antigen testing could be a useful tool to rapidly identify contagious people at risk for transmitting SARS-CoV-2 during nascent outbreaks and help reduce COVID-19 burden in nursing homes. PRIMARY FUNDING SOURCE: None.
Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Nursing Homes , Pandemics , SARS-CoV-2/immunology , COVID-19/epidemiology , False Negative Reactions , False Positive Reactions , Humans , Prospective Studies , Retrospective Studies , United States/epidemiologyABSTRACT
BACKGROUND: Following the implementation of rotavirus vaccination in 2006, severe acute gastroenteritis (AGE) due to group A rotavirus (RVA) has substantially declined in US children. We report the RVA genotype prevalence as well as coinfection data from 7 US New Vaccine Surveillance Network sites during 3 consecutive RVA seasons, 2014-2016. METHODS: A total of 1041 stool samples that tested positive for RVA by Rotaclone enzyme immunoassay were submitted to the Centers for Disease Control and Prevention (CDC) for RVA genotyping and multipathogen testing. RESULTS: A total of 795 (76%) samples contained detectable RVA when tested at the CDC. Rotavirus disease was highest in children < 3 years of age. Four G types (G1, G2, G9, and G12) accounted for 94.6% of strains while 2 P types (P[4] and P[8]) accounted for 94.7% of the strains. Overall, G12P[8] was the most common genotype detected in all 3 seasons. Stepwise conditional logistic analysis found year and study site were significant predictors of genotype. Twenty-four percent of RVA-positive specimens contained other AGE pathogens. CONCLUSIONS: G12P[8] predominated over 3 seasons, but strain predominance varied by year and study site. Ongoing surveillance provides continuous tracking and monitoring of US genotypes during the postvaccine era.
Subject(s)
Gastroenteritis , Population Surveillance/methods , Rotavirus Infections/epidemiology , Rotavirus/isolation & purification , Vaccines , Child , Feces , Gastroenteritis/epidemiology , Genotype , Humans , Infant , Phylogeny , Prevalence , Rotavirus/genetics , United States/epidemiologyABSTRACT
BACKGROUND: Acute gastroenteritis (AGE) is a common reason for children to receive medical care. However, the viral etiology of AGE illness is not well described in the post-rotavirus vaccine era, particularly in the outpatient (OP) setting. METHODS: Between 2012 and 2015, children 15 days through 17 years old presenting to Vanderbilt Children's Hospital, Nashville, Tennessee, with AGE were enrolled prospectively from the inpatient, emergency department, and OP settings, and stool specimens were collected. Healthy controls (HCs) were enrolled and frequency matched for period, age group, race, and ethnicity. Stool specimens were tested by means of reverse-transcription real-time quantitative polymerase chain reaction for norovirus, sapovirus, and astrovirus RNA and by Rotaclone enzyme immunoassay for rotavirus antigen, followed by polymerase chain reaction verification of antigen detection. RESULTS: A total of 3705 AGE case patients and 1563 HCs were enrolled, among whom 2885 case patients (78%) and 1110 HCs (71%) provided stool specimens that were tested. All 4 viruses were more frequently detected in AGE case patients than in HCs (norovirus, 22% vs 8%, respectively; rotavirus, 10% vs 1%; sapovirus, 10% vs 5%; and astrovirus, 5% vs 2%; Pâ <â .001 for each virus). In the OP setting, rates of AGE due to norovirus were higher than rate for the other 3 viruses. Children <5 years old had higher OP AGE rates than older children for all viruses. CONCLUSIONS: Norovirus remains the most common virus detected in all settings, occurring nearly twice as frequently as the next most common pathogens, sapovirus and rotavirus. Combined, norovirus, sapovirus, rotavirus, and astrovirus were associated with almost half of all AGE visits and therefore are an important reason for children to receive medical care.
Subject(s)
Gastroenteritis , Rotavirus Vaccines , Rotavirus , Sapovirus , Adolescent , Child , Child, Preschool , Feces , Gastroenteritis/epidemiology , Humans , Infant , Sapovirus/genetics , Tennessee/epidemiologyABSTRACT
BACKGROUND: Rotavirus is a common cause of severe pediatric acute gastroenteritis. Two vaccines are licensed in the United States and have demonstrated high effectiveness against moderate to severe disease. However, fewer data are available on rotavirus vaccine effectiveness (VE) against milder disease. METHODS: We leveraged active surveillance data from Kaiser Permanente Northwest to calculate rotavirus VE against medically attended rotavirus illness among age-eligible children. We utilized a test-negative case-control design and applied 4 distinct case definitions based on reverse transcription-quantitative real-time PCR (qRT-PCR) assay and enzyme immunoassay (EIA) test results. VE was calculated as 100 × (1 - odds ratio), and models were adjusted for age group. RESULTS: The VE analysis population comprised 842 children, 799 (95%) of whom had mild disease requiring at most a clinic visit and 698 (83%) of whom were fully vaccinated against rotavirus. Age-adjusted VE was 70% (95% confidence interval [CI], 37-86%) against disease defined solely by qRT-PCR results, 72% (95% CI, 31-89%) against disease as defined by qRT-PCR with a quantification cycle (C q ) valueâ <27, 73% (95% CI, 32-90%) against disease that was qRT-PCR positive but EIA negative, and 62% (95% CI, -20-88%) against disease defined solely by EIA. Results were similar when restricting to disease resulting in at most an ambulatory clinic or emergency department visit. CONCLUSIONS: These results support the effectiveness of rotavirus vaccination in protecting US children from mild to moderate and severe disease. Our findings are also useful to show the effectiveness of rotavirus vaccination against qRT-PCR-defined illness.
Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Ambulatory Care , Case-Control Studies , Child , Hospitalization , Humans , Infant , Vaccination , Vaccines, AttenuatedABSTRACT
BACKGROUND: Acute gastroenteritis (AGE) burden, etiology, and severity in adults is not well characterized. We implemented a multisite AGE surveillance platform in 4 Veterans Affairs Medical Centers (Atlanta, Georgia; Bronx, New York; Houston, Texas; and Los Angeles, California), collectively serving >320 000 patients annually. METHODS: From 1 July 2016 to 30 June 2018, we actively identified inpatient AGE case patients and non-AGE inpatient controls through prospective screening of admitted patients and passively identified outpatients with AGE through stool samples submitted for clinical diagnostics. We abstracted medical charts and tested stool samples for 22 pathogens by means of multiplex gastrointestinal polymerase chain reaction panel followed by genotyping of norovirus- and rotavirus-positive samples. We determined pathogen-specific prevalence, incidence, and modified Vesikari severity scores. RESULTS: We enrolled 724 inpatients with AGE, 394 non-AGE inpatient controls, and 506 outpatients with AGE. Clostridioides difficile and norovirus were most frequently detected among inpatients (for AGE case patients vs controls: C. difficile, 18.8% vs 8.4%; norovirus, 5.1% vs 1.5%; P < .01 for both) and outpatients (norovirus, 10.7%; C. difficile, 10.5%). The incidence per 100 000 population was highest among outpatients (AGE, 2715; C. difficile, 285; norovirus, 291) and inpatients ≥65 years old (AGE, 459; C. difficile, 91; norovirus, 26). Clinical severity scores were highest for inpatient norovirus, rotavirus, and Shigella/enteroinvasive Escherichia coli cases. Overall, 12% of inpatients with AGE had intensive care unit stays, and 2% died; 3 deaths were associated with C. difficile and 1 with norovirus. C. difficile and norovirus were detected year-round with a fall/winter predominance. CONCLUSIONS: C. difficile and norovirus were leading AGE pathogens in outpatient and hospitalized US veterans, resulting in severe disease. Clinicians should remain vigilant for bacterial and viral causes of AGE year-round.
Subject(s)
Caliciviridae Infections , Clostridioides difficile , Gastroenteritis , Rotavirus , Veterans , Adult , Aged , Caliciviridae Infections/epidemiology , Feces , Gastroenteritis/epidemiology , Hospitals, Veterans , Humans , Incidence , Infant , Outpatients , Prospective Studies , United States/epidemiologyABSTRACT
BACKGROUND: Real-time reverse transcription polymerase chain reaction (rRT-PCR) and antigen tests are important diagnostics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sensitivity of antigen tests has been shown to be lower than that of rRT-PCR; however, data to evaluate epidemiologic characteristics that affect test performance are limited. METHODS: Paired mid-turbinate nasal swabs were collected from university students and staff and tested for SARS-CoV-2 using both Quidel Sofia SARS Antigen Fluorescent Immunoassay (FIA) and rRT-PCR assay. Specimens positive by either rRT-PCR or antigen FIA were placed in viral culture and tested for subgenomic RNA (sgRNA). Logistic regression models were used to evaluate characteristics associated with antigen results, rRT-PCR cycle threshold (Ct) values, sgRNA, and viral culture. RESULTS: Antigen FIA sensitivity was 78.9% and 43.8% among symptomatic and asymptomatic participants, respectively. Among rRT-PCR positive participants, negative antigen results were more likely among asymptomatic participants (odds ratio [OR] 4.6, 95% confidence interval [CI]: 1.3-15.4) and less likely among participants reporting nasal congestion (OR 0.1, 95% CI: .03-.8). rRT-PCR-positive specimens with higher Ct values (OR 0.5, 95% CI: .4-.8) were less likely, and specimens positive for sgRNA (OR 10.2, 95% CI: 1.6-65.0) more likely, to yield positive virus isolation. Antigen testing was >90% positive in specimens with Ct valuesâ <â 29. Positive predictive value of antigen test for positive viral culture (57.7%) was similar to that of rRT-PCR (59.3%). CONCLUSIONS: SARS-CoV-2 antigen test advantages include low cost, wide availability and rapid turnaround time, making them important screening tests. The performance of antigen tests may vary with patient characteristics, so performance characteristics should be accounted for when designing testing strategies and interpreting results.
Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Humans , RNA , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , Sensitivity and Specificity , UniversitiesABSTRACT
We used the BinaxNOW COVID-19 Ag Card to screen 1,540 asymptomatic college students for severe acute respiratory syndrome coronavirus 2 in a low-prevalence setting. Compared with reverse transcription PCR, BinaxNOW showed 20% overall sensitivity; among participants with culturable virus, sensitivity was 60%. BinaxNOW provides point-of-care screening but misses many infections.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Point-of-Care Systems , Sensitivity and Specificity , StudentsABSTRACT
We evaluated the performance of self-collected anterior nasal swab (ANS) and saliva samples compared with healthcare worker-collected nasopharyngeal swab specimens used to test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used the same PCR diagnostic panel to test all self-collected and healthcare worker-collected samples from participants at a public hospital in Atlanta, Georgia, USA. Among 1,076 participants, 51.9% were men, 57.1% were >50 years of age, 81.2% were Black (non-Hispanic), and 74.9% reported >1 chronic medical condition. In total, 8.0% tested positive for SARS-CoV-2. Compared with nasopharyngeal swab samples, ANS samples had a sensitivity of 59% and saliva samples a sensitivity of 68%. Among participants tested 3-7 days after symptom onset, ANS samples had a sensitivity of 80% and saliva samples a sensitivity of 85%. Sensitivity varied by specimen type and patient characteristics. These findings can help physicians interpret PCR results for SARS-CoV-2.
Subject(s)
COVID-19 , SARS-CoV-2 , Aged, 80 and over , COVID-19 Testing , Georgia , Humans , Male , Nasopharynx , Saliva , Specimen HandlingABSTRACT
Since 2013, group A rotavirus strains characterized as novel DS-1-like intergenogroup reassortant "equine-like G3" strains have emerged and spread across 5 continents among human populations in at least 14 countries. Here, we report a novel one-step TaqMan quantitative real-time reverse transcription-PCR assay developed to genotype and quantify the viral load for samples containing rotavirus equine-like G3 strains. Using a universal G forward primer and a newly designed reverse primer and TaqMan probe, we developed and validated an assay with a linear dynamic range of 227 to 2.3 × 109 copies per reaction and a limit of detection of 227 copies. The percent positive agreement, percent negative agreement, and precision of our assay were 100.00%, 99.63%, and 100.00%, respectively. This assay can simultaneously detect and quantify the viral load for samples containing DS-1-like intergenogroup reassortant equine-like G3 strains with high sensitivity and specificity, faster turnaround time, and decreased cost. It will be valuable for high-throughput screening of stool samples collected to monitor equine-like G3 strain prevalence and circulation among human populations throughout the world.
Subject(s)
Rotavirus Infections , Rotavirus , Animals , Feces , Genotype , Horses , Humans , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcription , Rotavirus/genetics , Rotavirus Infections/diagnosis , Rotavirus Infections/veterinaryABSTRACT
Objectives. To assess SARS-CoV-2 transmission within a correctional facility and recommend mitigation strategies.Methods. From April 29 to May 15, 2020, we established the point prevalence of COVID-19 among incarcerated persons and staff within a correctional facility in Arkansas. Participants provided respiratory specimens for SARS-CoV-2 testing and completed questionnaires on symptoms and factors associated with transmission.Results. Of 1647 incarcerated persons and 128 staff tested, 30.5% of incarcerated persons (range by housing unit = 0.0%-58.2%) and 2.3% of staff tested positive for SARS-CoV-2. Among those who tested positive and responded to symptom questions (431 incarcerated persons, 3 staff), 81.2% and 33.3% were asymptomatic, respectively. Most incarcerated persons (58.0%) reported wearing cloth face coverings 8 hours or less per day, and 63.3% reported close contact with someone other than their bunkmate.Conclusions. If testing remained limited to symptomatic individuals, fewer cases would have been detected or detection would have been delayed, allowing transmission to continue. Rapid implementation of mass testing and strict enforcement of infection prevention and control measures may be needed to mitigate spread of SARS-CoV-2 in this setting.
Subject(s)
COVID-19 Testing , COVID-19 , Correctional Facilities/statistics & numerical data , Adult , Aged , Aged, 80 and over , Arkansas/epidemiology , COVID-19/epidemiology , COVID-19/transmission , Housing/statistics & numerical data , Humans , Male , Middle Aged , Prevalence , Prisoners/statistics & numerical data , Surveys and QuestionnairesABSTRACT
Antigen-based tests for SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), are inexpensive and can return results within 15 minutes (1). Antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in asymptomatic and symptomatic persons within the first 5-12 days after symptom onset (2). These tests have been used at U.S. colleges and universities and other congregate settings (e.g., nursing homes and correctional and detention facilities), where serial testing of asymptomatic persons might facilitate early case identification (3-5). However, test performance data from symptomatic and asymptomatic persons are limited. This investigation evaluated performance of the Sofia SARS Antigen Fluorescent Immunoassay (FIA) (Quidel Corporation) compared with real-time reverse transcription-polymerase chain reaction (RT-PCR) for SARS-CoV-2 detection among asymptomatic and symptomatic persons at two universities in Wisconsin. During September 28-October 9, a total of 1,098 paired nasal swabs were tested using the Sofia SARS Antigen FIA and real-time RT-PCR. Virus culture was attempted on all antigen-positive or real-time RT-PCR-positive specimens. Among 871 (79%) paired swabs from asymptomatic participants, the antigen test sensitivity was 41.2%, specificity was 98.4%, and in this population the estimated positive predictive value (PPV) was 33.3%, and negative predictive value (NPV) was 98.8%. Antigen test performance was improved among 227 (21%) paired swabs from participants who reported one or more symptoms at specimen collection (sensitivity = 80.0%; specificity = 98.9%; PPV = 94.1%; NPV = 95.9%). Virus was isolated from 34 (46.6%) of 73 antigen-positive or real-time RT-PCR-positive nasal swab specimens, including two of 18 that were antigen-negative and real-time RT-PCR-positive (false-negatives). The advantages of antigen tests such as low cost and rapid turnaround might allow for rapid identification of infectious persons. However, these advantages need to be balanced against lower sensitivity and lower PPV, especially among asymptomatic persons. Confirmatory testing with an FDA-authorized nucleic acid amplification test (NAAT), such as RT-PCR, should be considered after negative antigen test results in symptomatic persons, and after positive antigen test results in asymptomatic persons (1).
Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Student Health Services , Adolescent , Adult , Asymptomatic Diseases , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Universities , Wisconsin/epidemiology , Young AdultABSTRACT
BACKGROUND: Despite the global roll-out of rotavirus vaccines (RotaTeq/Rotarix / ROTAVAC/Rotasiil), mortality and morbidity due to group A rotavirus (RVA) remains high in sub-Saharan Africa, causing 104,000 deaths and 600,000 hospitalizations yearly. In Cameroon, Rotarix™ was introduced in March 2014, but, routine laboratory diagnosis of rotavirus infection is not yet a common practice, and vaccine effectiveness studies to determine the impact of vaccine introduction have not been done. Thus, studies examining RVA prevalence post vaccine introduction are needed. The study aim was to determine RVA prevalence in severe diarrhoea cases in Littoral region, Cameroon and investigate the role of other diarrheagenic pathogens in RVA-positive cases. METHODS: We carried out a study among hospitalized children < 5 years of age, presenting with acute gastroenteritis in selected hospitals of the Littoral region of Cameroon, from May 2015 to April 2016. Diarrheic stool samples and socio-demographic data including immunization and breastfeeding status were collected from these participating children. Samples were screened by ELISA (ProSpecT™ Rotavirus) for detection of RVA antigen and by gel-based RT-PCR for detection of the VP6 gene. Co-infection was assessed by multiplexed molecular detection of diarrheal pathogens using the Luminex xTAG GPP assay. RESULTS: The ELISA assay detected RVA antigen in 54.6% (71/130) of specimens, with 45, positive by VP6 RT-PCR and 54, positive using Luminex xTAG GPP. Luminex GPP was able to detect all 45 VP6 RT-PCR positive samples. Co-infections were found in 63.0% (34/54) of Luminex positive RVA infections, with Shigella (35.3%; 12/34) and ETEC (29.4%; 10/34) detected frequently. Of the 71 ELISA positive RVA cases, 57.8% (41/71) were fully vaccinated, receiving two doses of Rotarix. CONCLUSION: This study provides insight on RVA prevalence in Cameroon, which could be useful for post-vaccine epidemiological studies, highlights higher than expected RVA prevalence in vaccinated children hospitalized for diarrhoea and provides the trend of RVA co-infection with other enteric pathogens. RVA genotyping is needed to determine circulating rotavirus genotypes in Cameroon, including those causing disease in vaccinated children.
Subject(s)
Antigens, Viral/isolation & purification , Capsid Proteins/isolation & purification , Coinfection/epidemiology , Diarrhea/virology , Rotavirus Infections/epidemiology , Rotavirus/genetics , Biological Assay , Cameroon/epidemiology , Child, Hospitalized , Child, Preschool , Coinfection/diagnosis , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Male , Prevalence , Reverse Transcriptase Polymerase Chain Reaction , Rotavirus Infections/diagnosis , Rotavirus Infections/drug therapy , Rotavirus Vaccines/therapeutic use , Vaccination , Vaccines, Attenuated/therapeutic useABSTRACT
BACKGROUND: Group A rotaviruses (RVA) are zoonotic pathogens responsible for acute enteritis in human and neonatal ruminants. This research aimed to determine the prevalence of RVA in ruminants (cattle, sheep, and goats) and investigate the circulating RVA genotypes in these animals in Kuwait. We conducted a cross-sectional study to detect RVA in ruminants, using an immunochromatography test (IC), direct sandwich ELISA test, and real-time RT-PCR (RT-qPCR) assay using fecal samples. RESULTS: A total of 400 cattle, 334 sheep, and 222 goats were examined. The prevalence of RVA was 5.3, 1.2, and 2.3%, respectively, using IC. The ELISA test detected RVA from 4.3% of cattle, 0.9% of sheep, and 1.8% of goats. There was a significant association between the occurrence of diarrhea and the presence of RVA in bovine fecal samples (p-value = 0.0022), while no statistical association between diarrhea and the presence of RVA in fecal samples of sheep and goats was observed (p-value = 0.7250; p-value = 0.4499, respectively). Twenty-three of the IC-positive samples (17 from cattle, two from sheep, and four from goats) were tested using a RT-qPCR RVA detection assay targeting the NSP3 gene. The results showed that 21 of 23 IC-positive samples tested positive by RT-qPCR. Detection of RVA genotypes revealed that G10P[11] was the predominant strain in cattle (58.8%), followed by G8P[1] (11.7%). One sheep sample was genotyped as G8P[1]. In addition, G6P[1] and G6P[14] were detected in goat samples. CONCLUSION: The present study revealed that the IC was more sensitive in detecting RVA antigen in fecal samples than the ELISA test. A higher occurrence of RVA infection was observed in cattle than in sheep and goats. This study suggests that RVA might be a risk factor of diarrhea in bovine calves less than 2 weeks old. This research also demonstrates the circulation of RVA in sheep and goat populations in Kuwait. Finally, the G10P[11] RVA genotype was the most prevalent genotype identified from cattle samples.
Subject(s)
Cattle Diseases/virology , Goat Diseases/virology , Rotavirus Infections/veterinary , Rotavirus/genetics , Sheep Diseases/virology , Animals , Cattle , Cross-Sectional Studies , Diarrhea/microbiology , Diarrhea/veterinary , Feces/virology , Genotype , Goats , Kuwait , Rotavirus/classification , Rotavirus Infections/virology , SheepABSTRACT
BACKGROUND: Since 2006, the New Vaccine Surveillance Network has conducted active, population-based surveillance for acute gastroenteritis (AGE) hospitalizations and emergency department (ED) visits in 3 United States counties. Trends in the epidemiology and disease burden of rotavirus hospitalizations and ED visits were examined from 2006 to 2016. METHODS: Childrenâ <â 3 years of age hospitalized or visiting the ED with AGE were enrolled from January 2006 through June 2016. Bulk stool specimens were collected and tested for rotavirus. Rotavirus-associated hospitalization and ED visit rates were calculated annually with 2006-2007 defined as the prevaccine period and 2008-2016 as the postvaccine period. Rotavirus genotype trends were compared over time. RESULTS: Over 11 seasons, 6954 children with AGE were enrolled and submitted a stool specimen (2187 hospitalized and 4767 in the ED). Comparing pre- and postvaccine periods, the proportion of children with rotavirus dramatically declined for hospitalization (49% vs 10%) and ED visits (49% vs 8%). In the postvaccine era, a biennial pattern of rotavirus rates was observed, with a trend toward an older median age. G1P[8] (63%) was the predominant genotype in the prevaccine period with a significantly lower proportion (7%) in the postvaccine period (Pâ <â .001). G2P[4] remained stable (8% to 14%) in both periods, whereas G3P[8] and G12P[8] increased in proportion from pre- to postvaccine periods (1% to 25% and 17% to 40%), respectively. CONCLUSIONS: The epidemiology and disease burden of rotavirus has been altered by rotavirus vaccination with a biennial disease pattern, sustained low rates of rotavirus in childrenâ <â 3 years of age, and a shift in the residual genotypes from G1P[8] to other genotypes.
Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Child , Feces , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Genotype , Hospitalization , Humans , Infant , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , United States/epidemiology , Watchful WaitingABSTRACT
Compared with the volume of data on coronavirus disease 2019 (COVID-19) outbreaks among older adults, relatively few data are available concerning COVID-19 in younger, healthy persons in the United States (1,2). In late March 2020, the aircraft carrier USS Theodore Roosevelt arrived at port in Guam after numerous U.S. service members onboard developed COVID-19. In April, the U.S. Navy and CDC investigated this outbreak, and the demographic, epidemiologic, and laboratory findings among a convenience sample of 382 service members serving aboard the aircraft carrier are reported in this study. The outbreak was characterized by widespread transmission with relatively mild symptoms and asymptomatic infection among this sample of mostly young, healthy adults with close, congregate exposures. Service members who reported taking preventive measures had a lower infection rate than did those who did not report taking these measures (e.g., wearing a face covering, 55.8% versus 80.8%; avoiding common areas, 53.8% versus 67.5%; and observing social distancing, 54.7% versus 70.0%, respectively). The presence of neutralizing antibodies, which represent antibodies that inhibit SARS-CoV-2, among the majority (59.2%) of those with antibody responses is a promising indicator of at least short-term immunity. This report improves the understanding of COVID-19 in the U.S. military and among young adults in congregate settings and reinforces the importance of preventive measures to lower risk for infection in similar environments.