ABSTRACT
BACKGROUND: Adults with PKU have difficulty maintaining plasma phenylalanine (Phe) in the range that is safe for neurologic function. Elevated plasma Phe is a risk factor for congenital anomalies and developmental delay in offspring resulting from pregnancies with poor Phe control in women with PKU. Enzyme supplementation with pegvaliase allows adults with PKU to eat an unrestricted diet and have plasma Phe levels in a safe range for pregnancy but pegvaliase has not been approved for use in pregnant females with PKU. We report the results of chart review of 14 living offspring of females affected with PKU who were responsive to pegvaliase and chose to remain on pegvaliase throughout their pregnancy. METHODS: Fourteen pregnancies (one triplet pregnancy) and their offspring were identified at eight PKU treatment centers and medical records from pregnancy and birth were submitted for this study. Institutional Review Board approval was obtained. Responses to a dataset were provided to a single center and analyzed. RESULTS: Six females and eight males were born without congenital anomalies and all offspring had normal growth parameters. While mothers had preexisting comorbidities, no additional comorbidities were reported in the offspring. Four of eleven infants (excluding triplet pregnancies) were delivered preterm (36%), a higher rate than the general population (12%). A single first trimester (eight weeks) miscarriage in a 40y was not counted in this cohort of 14 live born infants. CONCLUSION: This retrospective study suggests that pegvaliase is effective at maintaining safe maternal blood Phe levels during pregnancy without deleterious effects on mother or child. A tendency toward premature birth (4/11; 36%) is higher than expected.
Subject(s)
Abortion, Spontaneous , Phenylalanine Ammonia-Lyase , Phenylketonurias , Adult , Pregnancy , Male , Infant, Newborn , Infant , Child , Humans , Female , Live Birth , Retrospective Studies , Abortion, Spontaneous/epidemiology , Mothers , Phenylalanine , Recombinant ProteinsABSTRACT
Empagliflozin has been successfully repurposed for treating neutropenia and neutrophil dysfunction in patients with glycogen storage disease type 1b (GSD 1b), however, data in infants are missing. We report on efficacy and safety of empagliflozin in infants with GSD 1b. This is an international retrospective case series on 21 GSD 1b infants treated with empagliflozin (total treatment time 20.6 years). Before starting empagliflozin (at a median age of 8.1 months with a median dose of 0.3 mg/kg/day) 12 patients had clinical signs and symptoms of neutrophil dysfunction. Six of these previously symptomatic patients had no further neutropenia/neutrophil dysfunction-associated findings on empagliflozin. Eight patients had no signs and symptoms of neutropenia/neutrophil dysfunction before start and during empagliflozin treatment. One previously asymptomatic individual with a horseshoe kidney developed a central line infection with pyelonephritis and urosepsis during empagliflozin treatment. Of the 10 patients who were treated with G-CSF before starting empagliflozin, this was stopped in four and decreased in another four. Eleven individuals were never treated with G-CSF. While in 17 patients glucose homeostasis remained stable on empagliflozin, four showed glucose homeostasis instability in the introductory phase. In 17 patients, no other side effects were reported, while genital (n = 2) or oral (n = 1) candidiasis and skin infection (n = 1) were reported in the remaining four. Empagliflozin had a good effect on neutropenia/neutrophil dysfunction-related signs and symptoms and a favourable safety profile in infants with GSD 1b and therefore qualifies for further exploration as first line treatment.
Subject(s)
Benzhydryl Compounds , Glucosides , Glycogen Storage Disease Type I , Neutropenia , Neutrophils , Humans , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/complications , Neutropenia/drug therapy , Male , Female , Infant , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/administration & dosage , Retrospective Studies , Neutrophils/drug effects , Glucosides/therapeutic use , Glucosides/pharmacology , Glucosides/administration & dosage , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Treatment Outcome , Granulocyte Colony-Stimulating Factor/therapeutic useABSTRACT
PURPOSE: This paper aims to report collective information on safety and efficacy of empagliflozin drug repurposing in individuals with glycogen storage disease type Ib (GSD Ib). METHODS: This is an international retrospective questionnaire study on the safety and efficacy of empagliflozin use for management of neutropenia/neutrophil dysfunction in patients with GSD Ib, conducted among the respective health care providers from 24 countries across the globe. RESULTS: Clinical data from 112 individuals with GSD Ib were evaluated, representing a total of 94 treatment years. The median age at start of empagliflozin treatment was 10.5 years (range = 0-38 years). Empagliflozin showed positive effects on all neutrophil dysfunction-related symptoms, including oral and urogenital mucosal lesions, recurrent infections, skin abscesses, inflammatory bowel disease, and anemia. Before initiating empagliflozin, most patients with GSD Ib were on G-CSF (94/112; 84%). At the time of the survey, 49 of 89 (55%) patients previously treated with G-CSF had completely stopped G-CSF, and another 15 (17%) were able to reduce the dose. The most common adverse event during empagliflozin treatment was hypoglycemia, occurring in 18% of individuals. CONCLUSION: Empagliflozin has a favorable effect on neutropenia/neutrophil dysfunction-related symptoms and safety profile in individuals with GSD Ib.
Subject(s)
Glycogen Storage Disease Type I , Neutropenia , Adolescent , Adult , Benzhydryl Compounds , Child , Child, Preschool , Glucosides , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/pathology , Granulocyte Colony-Stimulating Factor/therapeutic use , Humans , Infant , Infant, Newborn , Neutropenia/drug therapy , Retrospective Studies , Surveys and Questionnaires , Young AdultABSTRACT
BACKGROUND: Seventy-five percent of patients with pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency (PDE-ALDH7A1) suffer intellectual developmental disability despite pyridoxine treatment. Adjunct lysine reduction therapies (LRT), aimed at lowering putative neurotoxic metabolites, are associated with improved cognitive outcomes. However, possibly due to timing of treatment, not all patients have normal intellectual function. METHODS: This retrospective, multi-center cohort study evaluated the effect of timing of pyridoxine monotherapy and pyridoxine with adjunct LRT on neurodevelopmental outcome. Patients with confirmed PDE-ALDH7A1 with at least one sibling with PDE-ALDH7A1 and a difference in age at treatment initiation were eligible and identified via the international PDE registry, resulting in thirty-seven patients of 18 families. Treatment regimen was pyridoxine monotherapy in ten families and pyridoxine with adjunct LRT in the other eight. Primary endpoints were standardized and clinically assessed neurodevelopmental outcomes. Clinical neurodevelopmental status was subjectively assessed over seven domains: overall neurodevelopment, speech/language, cognition, fine and gross motor skills, activities of daily living and behavioral/psychiatric abnormalities. RESULTS: The majority of early treated siblings on pyridoxine monotherapy performed better than their late treated siblings on the clinically assessed domain of fine motor skills. For siblings on pyridoxine and adjunct LRT, the majority of early treated siblings performed better on clinically assessed overall neurodevelopment, cognition, and behavior/psychiatry. Fourteen percent of the total cohort was assessed as normal on all domains. CONCLUSION: Early treatment with pyridoxine and adjunct LRT may be beneficial for neurodevelopmental outcome. When evaluating a more extensive neurodevelopmental assessment, the actual impairment rate may be higher than the 75% reported in literature. TAKE- HOME MESSAGE: Early initiation of lysine reduction therapies adjunct to pyridoxine treatment in patients with PDE-ALDH7A1 may result in an improved neurodevelopmental outcome.
Subject(s)
Lysine , Pyridoxine , Activities of Daily Living , Cohort Studies , Epilepsy , Humans , Pyridoxine/therapeutic use , Retrospective StudiesABSTRACT
Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided.
Subject(s)
Arginine/administration & dosage , Dietary Supplements , Epilepsy/diet therapy , Epilepsy/diagnosis , Aldehyde Dehydrogenase/deficiency , Consensus , Epilepsy/drug therapy , Humans , International Cooperation , Lysine/deficiency , Pyridoxine/therapeutic useABSTRACT
Background: Nutrition management for GSD Type I (GSDI; OMIM #232200, 232220) is complex, with the goal being to maintain euglycemia while minimizing metabolic derangements. Management guidelines were published in 2002 and 2014. However, there is limited information on the nuances of nutrition management and the unique feeding challenges of children. Methods: A REDCap survey focusing on staffing and current practices in the nutrition management of children with GSD I who were <5 years of age was sent to the metabolic dietitian's listserv and GMDI membership in 8/2023. Results: There were 21 North American respondents. In 17/21 clinics (81%), Prosobee® was the primary choice for infant formula. Dietitians used different methods to determine hourly glucose needs. Fasting recommendations ranged from 1 to 3 h, and the use of nighttime continuous feeding was common. Cornstarch was started between 6 and 12 months of age. Most clinics did not use Glycosade® for children <5 years of age. Oral motor dysfunction, gagging, and lack of interest in food were common. Continuous glucose monitoring (CGM) devices were recommended in 20 clinics (95%). Most clinics followed patients on an outpatient basis. All clinics provided a hypoglycemia management plan; however, there was wide variability in practice. Conclusion: This survey highlights the variability in the care of individuals <5 years of age with GSD I. Updated guidelines are needed to help address the unique nutrition challenges in this age group.
Subject(s)
Glycogen Storage Disease Type I , Humans , Infant , Child, Preschool , Glycogen Storage Disease Type I/diet therapy , Male , Female , Hypoglycemia/prevention & control , Blood Glucose/metabolism , Blood Glucose/analysis , Infant Formula , Surveys and Questionnaires , Nutritional Status , Nutrition Therapy/methods , FastingABSTRACT
BACKGROUND AND OBJECTIVES: Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is a developmental epileptic encephalopathy characterized by seizure improvement after pyridoxine supplementation. Adjunct lysine reduction therapies reduce the accumulation of putative neurotoxic metabolites with the goal to improve developmental outcomes. Our objective was to examine the association between treatment with lysine reduction therapies and cognitive outcomes. METHODS: Participants were recruited from within the International Registry for Patients with Pyridoxine-Dependent Epilepsy from August 2014 through March 2021. The primary outcome was standardized developmental test scores associated with overall cognitive ability. The relationship between test scores and treatment was analyzed with multivariable linear regression using a mixed-effects model. A priori, we hypothesized that treatment in early infancy with pyridoxine and lysine reduction therapies would result in a normal developmental outcome. A sub-analysis was performed to evaluate the association between cognitive outcome and lysine reduction therapies initiated in the first six months of life. RESULTS: A total of 112 test scores from 60 participants were available. On average, treatment with pyridoxine and lysine reduction therapies was associated with a non-significant increase of 6.9 points (95% CI -2.7 to 16.5) on developmental testing compared to treatment with pyridoxine alone. For the sub-analysis, a total of 14 developmental testing scores were available from 8 participants. On average, treatment with pyridoxine and lysine reduction therapies in the first six months of life was associated with a significant increase of 21.9 points (95% CI 1.7 to 42.0) on developmental testing. DISCUSSION: Pyridoxine and lysine reduction therapies at any age was associated with mild improvement in developmental testing and treatment in early infancy was associated with a clinically significant increase in developmental test scores. These results provide insight into the mechanism of intellectual and developmental disability in PDE-ALDH7A1 and emphasize the importance of treatment in early infancy with both pyridoxine and lysine reduction therapies. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that in PDE-ALDH7A1, pyridoxine plus lysine reduction therapies compared to pyridoxine alone is not significantly associated with overall higher developmental testing scores, but treatment in the first six months of life is associated with significantly higher developmental testing scores.
ABSTRACT
Phenylalanine hydroxylase (PAH) deficiency is an inborn error of phenylalanine (Phe) metabolism that results in the buildup of dietary Phe to potentially toxic levels. Poorly controlled Phe levels in women of childbearing age are particularly worrisome due to the toxic effect of elevated Phe on fetal development. Pegvaliase was recently approved as an enzyme substitution therapy to reduce Phe concentrations in adult patients with PAH deficiency who have suboptimal Phe control on existing management. During the pegvaliase clinical trials pregnant patients were excluded from participation, but the approved label does not contraindicate its use during pregnancy. This case report describes the outcome of the first PAH deficient patient who elected to continue treatment with pegvaliase during pregnancy and reviews the lessons learned and future considerations.
ABSTRACT
OBJECTIVE: To characterize the clinical phenotype, genetic origin, and muscle pathology of patients with the FKRP c.1387A>G mutation. METHODS: Standardized clinical data were collected for all patients known to the authors with c.1387A>G mutations in FKRP. Muscle biopsies were reviewed and used for histopathology, immunostaining, Western blotting, and DNA extraction. Genetic analysis was performed on extracted DNA. RESULTS: We report the clinical phenotypes of 6 patients homozygous for the c.1387A>G mutation in FKRP. Onset of symptoms was <2 years, and 5 of the 6 patients never learned to walk. Brain MRIs were normal. Cognition was normal to mildly impaired. Microarray analysis of 5 homozygous FKRP c.1387A>G patients revealed a 500-kb region of shared homozygosity at 19q13.32, including FKRP. All 4 muscle biopsies available for review showed end-stage dystrophic pathology, near absence of glycosylated α-dystroglycan (α-DG) by immunofluorescence, and reduced molecular weight of α-DG compared with controls and patients with homozygous FKRP c.826C>A limb-girdle muscular dystrophy. CONCLUSIONS: The clinical features and muscle pathology in these newly reported patients homozygous for FKRP c.1387A>G confirm that this mutation causes congenital muscular dystrophy. The clinical severity might be explained by the greater reduction in α-DG glycosylation compared with that seen with the c.826C>A mutation. The shared region of homozygosity at 19q13.32 indicates that FKRP c.1387A>G is a founder mutation with an estimated age of 60 generations (â¼1,200-1,500 years).
ABSTRACT
We report the clinical, biochemical, and molecular findings in two brothers with encephalopathy and multi-systemic disease. Abnormal transferrin glycoforms were suggestive of a type I congenital disorder of glycosylation (CDG). While exome sequencing was negative for CDG related candidate genes, the testing revealed compound heterozygous mutations in the mitochondrial elongation factor G gene (GFM1). One of the mutations had been reported previously while the second, novel variant was found deep in intron 6, activating a cryptic splice site. Functional studies demonstrated decreased GFM1 protein levels, suggested disrupted assembly of mitochondrial complexes III and V and decreased activities of mitochondrial complexes I and IV, all indicating combined OXPHOS deficiency.
Subject(s)
Congenital Abnormalities/genetics , Congenital Abnormalities/pathology , Gene Expression , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Oxidative Phosphorylation , Peptide Elongation Factor G/biosynthesis , Peptide Elongation Factor G/genetics , RNA Splice Sites , Child , Child, Preschool , Humans , Infant , Infant, Newborn , MaleABSTRACT
Abstract Isolated sulfite oxidase deficiency (ISOD) is a devastating, neurometabolic disorder caused by mutations in the SUOX gene necessary for the final step in the sulfur-containing amino acid catabolic pathway. Patients classically present in the neonatal period with neurologic manifestations. Biochemical findings include elevated sulfocysteine, low cystine and undetectable homocysteine with normal uric acid levels. Other associated biochemical markers include elevated plasma alpha-aminoadipic semialdehyde and piperideine-6-carboxylic acid. We report a patient with classic neonatal onset ISOD (refractory seizures, hypertonicity, brain abnormalities, pathogenic SUOX mutations). Her clinical course was marked by extreme irritability, prompting the use of a low methionine and cystine diet to decrease toxic metabolites thought to be contributing to her symptoms. Biochemical markers and extreme irritability improved with dietary treatment (methionine=30mg/kg/day). She died of sepsis in early infancy, precluding long term follow-up. This case reviews the potential benefits and limitations of diet therapy in this rare disorder.
ABSTRACT
Pyruvate dehydrogenase complex (PDC) deficiencies are mostly due to mutations in the X-linked PDHA1 gene. Males with hemizygous PDHA1 mutations are clinically more severely affected, while those with mosaic PDHA1 mutations may manifest milder phenotypes. We report a patient harboring a novel, mosaic missense PDHA1 mutation, c.523G > A (p.A175T), with a severe clinical presentation of congenital microcephaly, significant brain abnormalities, persistent seizures, profound developmental delay, and failure to thrive. We review published cases of PDHA1 mosaicism.