Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Virol ; 87(24): 13307-20, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24089548

ABSTRACT

Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4(+) cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity.


Subject(s)
DNA, Viral/metabolism , Endogenous Retroviruses/genetics , HIV Infections/virology , HIV-1/genetics , Long Interspersed Nucleotide Elements , CD4-Positive T-Lymphocytes/virology , Cell Line , DNA, Viral/genetics , Endogenous Retroviruses/metabolism , HIV Infections/genetics , HIV-1/metabolism , Humans , vif Gene Products, Human Immunodeficiency Virus/genetics , vif Gene Products, Human Immunodeficiency Virus/metabolism , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism
2.
JCI Insight ; 2(17)2017 09 07.
Article in English | MEDLINE | ID: mdl-28878119

ABSTRACT

Eradication of the HIV-1 latent reservoir represents the current paradigm to developing a cure for AIDS. HIV-1 has evolved multiple mechanisms to evade CD8 T cell responses, including HIV-1 Nef-mediated downregulation of MHC-I from the surface of infected cells. Nef transcripts and protein are detectable in samples from aviremic donors, suggesting that Nef expression in latently HIV-1-infected CD4 T cells protects them from immune-mediated clearance. Here, we tested 4 small molecule inhibitors of HIV-1 Nef in an in vitro primary CD4 T cell latency model and measured the ability of autologous ex vivo or HIV-1 peptide-expanded CD8 T cells to recognize and kill latently infected cells as a function of inhibitor treatment. Nef inhibition enhanced cytokine secretion by autologous CD8 T cells against latently HIV-1-infected targets in an IFN-γ release assay. Additionally, CD8 T cell-mediated elimination of latently HIV-1-infected cells was significantly enhanced following Nef blockade, measured as a reduction in the frequency of infected cells and Gag protein in cultures following viral outgrowth assays. We demonstrate for the first time to our knowledge that Nef blockade, in combination with HIV-specific CD8 T cell expansion, might be a feasible strategy to target the HIV-1 latent reservoir that should be tested further in vivo.


Subject(s)
Anti-HIV Agents/pharmacology , Gene Products, nef/antagonists & inhibitors , HIV-1/metabolism , Virus Latency , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Down-Regulation , Gene Products, nef/genetics , Gene Products, nef/metabolism , HIV-1/drug effects , Humans , Major Histocompatibility Complex/immunology
3.
J Control Release ; 236: 22-30, 2016 08 28.
Article in English | MEDLINE | ID: mdl-27297778

ABSTRACT

Peptide based vaccine that incorporates one or several highly conserved CD8+ T cells epitopes to induce potent cytotoxic T lymphocyte (CTL) response is desirable for some infectious diseases, such as HIV-1 (human immunodeficiency virus-1), and cancers. However, the CD8+ T cells epitope is often weakly immunogenic, and thus requires a specific adjuvant or delivery system to enhance the efficiency. Here we investigated the use of self-assembling peptide EAK16-II based platform to achieve the co-delivery of CD8+ T cells epitope and TLR7/8 agonists (R848 or R837) for augmenting DCs maturation and HIV-1 specific CTL response. HIV-1 CTL epitope SL9 was conjugated with EAK16-II to obtain SL9-EAK16-II, which further spontaneously co-assembled with R848 or R837 in aqueous solution, forming co-assembled nanofibers. Fluorescence spectra and calorimetrical titration revealed the interaction between SL9-EAK16-II assemblies and R848 or R837 via hydrogen bonding and hydrophobic interaction, with the binding affinity (dissociation constant Kd) of 0.62µM or 0.53µM, respectively. Ex vivo generated DCs from HIV-1+ patients pulsed with the SL9-EAK16-II/R848 nanofibers stimulated significantly more polyfunctional SL9 specific CTLs, compared to the DCs pulsed with SL9 alone or the mixture of SL9 and TLR agonist. Furthermore, the nanofibers elicited stronger SL9 specific CTL response in vaccinated mice. Our findings suggest the self-assembling peptide EAK16-II might be used as a new delivery system for peptide based vaccines.


Subject(s)
Epitopes, T-Lymphocyte/metabolism , HIV-1/immunology , Imidazoles/administration & dosage , Membrane Glycoproteins/agonists , Nanofibers/chemistry , T-Lymphocytes, Cytotoxic/drug effects , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Drug Delivery Systems , Epitopes, T-Lymphocyte/immunology , Female , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Membrane Glycoproteins/metabolism , Mice, Transgenic , Monocytes/immunology , Monocytes/metabolism , Particle Size , Quinolines/administration & dosage , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL