Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Microbiol ; 14(3): 368-85, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22066472

ABSTRACT

NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion , HSP90 Heat-Shock Proteins/metabolism , Neisseria meningitidis/physiology , Amino Acid Sequence , Benzoquinones/pharmacology , Cells, Cultured , Escherichia coli/genetics , Escherichia coli/physiology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Host-Pathogen Interactions , Humans , Lactams, Macrocyclic/pharmacology , Meningococcal Infections/metabolism , Meningococcal Infections/microbiology , Molecular Sequence Data , Protein Binding , Recombinant Proteins/metabolism
2.
Appl Environ Microbiol ; 75(3): 823-36, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19074607

ABSTRACT

Bacterial multicomponent monooxygenases (BMMs) are a heterogeneous family of di-iron monooxygenases which share the very interesting ability to hydroxylate aliphatic and/or aromatic hydrocarbons. Each BMM possesses defined substrate specificity and regioselectivity which match the metabolic requirements of the strain from which it has been isolated. Pseudomonas sp. strain OX1, a strain able to metabolize o-, m-, and p-cresols, produces the BMM toluene/o-xylene monooxygenase (ToMO), which converts toluene to a mixture of o-, m-, and p-cresol isomers. In order to investigate the molecular determinants of ToMO regioselectivity, we prepared and characterized 15 single-mutant and 3 double-mutant forms of the ToMO active site pocket. Using the Monte Carlo approach, we prepared models of ToMO-substrate and ToMO-reaction intermediate complexes which allowed us to provide a molecular explanation for the regioselectivities of wild-type and mutant ToMO enzymes. Furthermore, using binding energy values calculated by energy analyses of the complexes and a simple mathematical model of the hydroxylation reaction, we were able to predict quantitatively the regioselectivities of the majority of the variant proteins with good accuracy. The results show not only that the fine-tuning of ToMO regioselectivity can be achieved through a careful alteration of the shape of the active site but also that the effects of the mutations on regioselectivity can be quantitatively predicted a priori.


Subject(s)
Oxygenases/chemistry , Oxygenases/genetics , Pseudomonas/enzymology , Catalytic Domain , Cresols/metabolism , DNA Mutational Analysis , Kinetics , Models, Molecular , Models, Theoretical , Mutation, Missense , Stereoisomerism , Substrate Specificity , Toluene/metabolism
3.
PLoS One ; 9(10): e110047, 2014.
Article in English | MEDLINE | ID: mdl-25347845

ABSTRACT

Neisseria meningitidis adhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR). Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells.


Subject(s)
ADP-Ribosylation Factors/metabolism , Adhesins, Bacterial/metabolism , Epithelial Cells/metabolism , HSP90 Heat-Shock Proteins/metabolism , rab GTP-Binding Proteins/metabolism , ADP-Ribosylation Factor 6 , Cell Line , Humans , Intracellular Space , Neisseria meningitidis/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Binding , Protein Transport , Proteolysis , Recombinant Proteins , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL