Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Tree Physiol ; 32(9): 1082-91, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22848089

ABSTRACT

Interspecific gene flow is common in oaks. In the Mediterranean, this process produced geographical differentiations and new species, which may have contributed to the diversification of the production of volatile terpenes in the oak species of this region. The endemic North African deciduous oak Quercus afares (Pomel) is considered to be a stabilized hybrid between the evergreen Quercus suber (L.) and the deciduous Quercus canariensis (Willd.), presumably being monoterpene and isoprene emitters, respectively. In a common garden experiment, we examined the terpene emission capacities, terpene synthase (TPS) activities and nuclear genetic markers in 52 trees of these three oak species. All but one of the Q. suber and Q. canariensis trees were found to be genetically pure, whereas most Q. afares trees possessed a mixed genotype with a predominance of Q. suber alleles. Analysis of the foliar terpene emissions and TPS activities revealed that all the Q. canariensis trees strongly produced isoprene while all the Q. suber trees were strong monoterpene producers. Quercus afares trees produced monoterpenes as well but at more variable and significantly lower rates, and with a monoterpene pattern different than that observed in Q. suber. Among 17 individuals tested, one Q. afares tree emitted only an insignificant amount of terpenes. No mixed isoprene/monoterpene emitter was detected. Our results suggest that the capacity and pattern of volatile terpene production in Algerian Q. afares populations have strongly diverged from those of its parental species and became quantitatively and qualitatively reduced, including the complete suppression of isoprene production.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Intramolecular Lyases/metabolism , Quercus/chemistry , Terpenes/metabolism , Butadienes/metabolism , Carbon Dioxide/metabolism , Chimera , Cluster Analysis , Genotype , Hemiterpenes/metabolism , Isoenzymes , Monoterpenes/metabolism , Pentanes/metabolism , Plant Leaves/chemistry , Plant Leaves/enzymology , Plant Leaves/metabolism , Plant Proteins/metabolism , Quercus/enzymology , Quercus/metabolism , Species Specificity , Trees
2.
Springerplus ; 1: 9, 2012.
Article in English | MEDLINE | ID: mdl-23961340

ABSTRACT

Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another stress factor, usually overlooked but very important for the Amazon region, is flooding. We studied the exchange of VOCs in relation to CO2 exchange and transpiration of 8 common tree species from the Amazonian floodplain forest grown up from seeds using a dynamic enclosure system. Analysis of volatile organics was performed by PTR-MS fast online measurements. Our study confirmed emissions of ethanol and acetaldehyde at the beginning of root anoxia after inundation, especially in less anoxia adapted species such as Vatairea guianensis, but not for Hevea spruceana probably due to a better adapted metabolism. In contrast to short-term inundation, long-term flooding of the root system did not result in any emission of ethanol or/and acetaldehyde. Emission of other VOCs, such as isoprenoids, acetone, and methanol exhibited distinct behavior related to the origin (igapó or várzea type of floodplain) of the tree species. Also physiological activities exhibited different response patterns for trees from igapó or várzea. In general, isoprenoid emissions increased within the course of some days of short-term flooding. After a long period of waterlogging, VOC emissions decreased considerably, along with photosynthesis, transpiration and stomatal conductance. However, even under long-term testing conditions, two tree species did not show any significant decrease or increase in photosynthesis. In order to understand ecophysiological advantages of the different responses we need field investigations with adult tree species.

SELECTION OF CITATIONS
SEARCH DETAIL