Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Pharmacol Exp Ther ; 383(2): 172-181, 2022 11.
Article in English | MEDLINE | ID: mdl-36116795

ABSTRACT

Emerging evidence implicates the G-protein coupled receptor (GPCR) GPR183 in the development of neuropathic pain. Further investigation of the signaling pathways downstream of GPR183 is needed to support the development of GPR183 antagonists as analgesics. In rodents, intrathecal injection of its ligand, 7α,25-dihydroxycholesterol (7α,25-OHC), causes time-dependent development of mechano-and cold- allodynia (behavioral hypersensitivity). These effects are blocked by the selective small molecule GPR183 antagonist, SAE-14. However, the molecular mechanisms engaged downstream of GPR183 in the spinal cord are not known. Here, we show that 7α,25-OHC-induced behavioral hypersensitivity is Gα i dependent, but not ß-arrestin 2-dependent. Non-biased transcriptomic analyses of dorsal-horn spinal cord (DH-SC) tissues harvested at the time of peak hypersensitivity implicate potential contributions of mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB). In support, we found that the development of 7α,25-OHC/GPR183-induced mechano-allodynia was associated with significant activation of MAPKs (extracellular signal-regulated kinase [ERK], p38) and redox-sensitive transcription factors (NF-κB) and increased formation of inflammatory and neuroexcitatory cytokines. SAE-14 blocked these effects and behavioral hypersensitivity. Our findings provide novel mechanistic insight into how GPR183 signaling in the spinal cord produces hypersensitivity through MAPK and NF-κB activation. SIGNIFICANCE STATEMENT: Using a multi-disciplinary approach, we have characterized the molecular mechanisms underpinning 7α,25-OHC/GPR183-induced hypersensitivity in mice. Intrathecal injections of the GPR183 agonist 7α,25-OHC induce behavioral hypersensitivity, and these effects are blocked by the selective GPR183 antagonist SAE-14. We found that 7α,25-OHC-induced allodynia is dependent on MAPK and NF-κB signaling pathways and results in an increase in pro-inflammatory cytokine expression. This study provides a first insight into how GPR183 signaling in the spinal cord is pronociceptive.


Subject(s)
Hyperalgesia , NF-kappa B , Animals , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Hyperalgesia/chemically induced , Ligands , Mice , NF-kappa B/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Mo Med ; 118(4): 327-333, 2021.
Article in English | MEDLINE | ID: mdl-34373667

ABSTRACT

Chronic neuropathic pain is currently a major health issue in U.S. complicated by the lack of non-opioid analgesic alternatives. Our investigations led to the discovery of major signaling pathways involved in the transition of acute to chronic neuropathic pain and the identification of several targets for therapeutic intervention. Our translational approach has facilitated the advancement of novel medicines for chronic neuropathic pain that are in advanced clinical development and clinical trials.


Subject(s)
Chronic Pain , Neuralgia , Analgesics, Opioid/therapeutic use , Chronic Pain/drug therapy , Humans , Neuralgia/drug therapy
3.
J Neuroinflammation ; 17(1): 314, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33092620

ABSTRACT

Opioid therapies for chronic pain are undermined by many adverse side effects that reduce their efficacy and lead to dependence, abuse, reduced quality of life, and even death. We have recently reported that sphingosine-1-phosphate (S1P) 1 receptor (S1PR1) antagonists block the development of morphine-induced hyperalgesia and analgesic tolerance. However, the impact of S1PR1 antagonists on other undesirable side effects of opioids, such as opioid-induced dependence, remains unknown. Here, we demonstrate that naloxone-precipitated morphine withdrawal in mice altered de novo sphingolipid metabolism in the dorsal horn of the spinal cord and increased S1P that accompanied the manifestation of several withdrawal behaviors. Blocking de novo sphingolipid metabolism with intrathecal administration of myriocin, an inhibitor of serine palmitoyltransferase, blocked naloxone-precipitated withdrawal. Noteworthy, we found that competitive (NIBR-15) and functional (FTY720) S1PR1 antagonists attenuated withdrawal behaviors in mice. Mechanistically, at the level of the spinal cord, naloxone-precipitated withdrawal was associated with increased glial activity and formation of the potent inflammatory/neuroexcitatory cytokine interleukin-1ß (IL-1ß); these events were attenuated by S1PR1 antagonists. These results provide the first molecular insight for the role of the S1P/S1PR1 axis during opioid withdrawal. Our data identify S1PR1 antagonists as potential therapeutics to mitigate opioid-induced dependence and support repurposing the S1PR1 functional antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.


Subject(s)
Analgesics, Opioid/adverse effects , Central Nervous System/metabolism , Morphine/adverse effects , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Sphingosine-1-Phosphate Receptors/metabolism , Substance Withdrawal Syndrome/metabolism , Animals , Central Nervous System/drug effects , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Male , Mice , Mice, Inbred BALB C , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Rodentia , Substance Withdrawal Syndrome/drug therapy
4.
J Pharmacol Exp Ther ; 375(2): 367-375, 2020 11.
Article in English | MEDLINE | ID: mdl-32913007

ABSTRACT

Neuropathic pain is a debilitating public health concern for which novel non-narcotic therapeutic targets are desperately needed. Using unbiased transcriptomic screening of the dorsal horn spinal cord after nerve injury we have identified that Gpr183 (Epstein-Barr virus-induced gene 2) is upregulated after chronic constriction injury (CCI) in rats. GPR183 is a chemotactic receptor known for its role in the maturation of B cells, and the endogenous ligand is the oxysterol 7α,25-dihydroxycholesterol (7α,25-OHC). The role of GPR183 in the central nervous system is not well characterized, and its role in pain is unknown. The profile of commercially available probes for GPR183 limits their use as pharmacological tools to dissect the roles of this receptor in pathophysiological settings. Using in silico modeling, we have screened a library of 5 million compounds to identify several novel small-molecule antagonists of GPR183 with nanomolar potency. These compounds are able to antagonize 7α,25-OHC-induced calcium mobilization in vitro with IC50 values below 50 nM. In vivo intrathecal injections of these antagonists during peak pain after CCI surgery reversed allodynia in male and female mice. Acute intrathecal injection of the GPR183 ligand 7α,25-OHC in naïve mice induced dose-dependent allodynia. Importantly, this effect was blocked using our novel GPR183 antagonists, suggesting spinal GPR183 activation as pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify this receptor as a potential target for therapeutic intervention. SIGNIFICANCE STATEMENT: We have identified several novel GPR183 antagonists with nanomolar potency. Using these antagonists, we have demonstrated that GPR183 signaling in the spinal cord is pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify it as a potential target for therapeutic intervention.


Subject(s)
Neuralgia/metabolism , Oxysterols/metabolism , Receptors, G-Protein-Coupled/metabolism , Spinal Cord/metabolism , Animals , Female , HL-60 Cells , Humans , Male , Mice , Neuralgia/drug therapy , Neuralgia/pathology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Signal Transduction , Spinal Cord/pathology
5.
Neurobiol Pain ; 11: 100082, 2022.
Article in English | MEDLINE | ID: mdl-35024498

ABSTRACT

Treatment with anti-neoplastic agents can lead to the development of chemotherapy induced peripheral neuropathy (CIPN), which is long lasting and often refractory to treatment. This neuropathic pain develops along dermatomes innervated by peripheral nerves with cell bodies located in the dorsal root ganglia (DRG). The voltage-gated sodium channel NaV1.7 is expressed at high levels in peripheral nerve tissues and has been implicated in the development of CIPN. Efforts to develop novel analgesics directly inhibiting NaV1.7 have been unsuccessful, and our group has pioneered an alternative approach based on indirect modulation of channel trafficking by the accessory protein collapsin response mediator protein 2 (CRMP2). We have recently reported a small molecule, compound 194, that inhibits CRMP2 SUMOylation by the E2 SUMO-conjugating enzyme Ubc9 (Cai et al. , Sci. Transl. Med. 2021 13(6 1 9):eabh1314). Compound 194 is a potent and selective inhibitor of NaV1.7 currents in DRG neurons and reverses mechanical allodynia in models of surgical, inflammatory, and neuropathic pain, including spared nerve injury and paclitaxelinduced peripheral neuropathy. Here we report that, in addition to its reported effects in rats, 194 also reduces mechanical allodynia in male CD-1 mice treated with platinumcomplex agent oxaliplatin. Importantly, treatment with 194 prevented the development of mechanical allodynia when co-administered with oxaliplatin. No effects were observed on the body weight of animals treated with oxaliplatin or 194 throughout the study period. These findings support the notion that 194 is a robust inhibitor of CIPN that reduces established neuropathic pain and prevents the emergence of neuropathic pain during treatment with multiple anti-neoplastic agents in both mice and rats.

6.
Pain ; 161(1): 177-184, 2020 01.
Article in English | MEDLINE | ID: mdl-31490328

ABSTRACT

Chemotherapy-induced neuropathic pain (CINP) in both sexes compromises many current chemotherapeutics and lacks an FDA-approved therapy. We recently identified the sphingosine-1-phosphate receptor subtype 1 (S1PR1) and A3 adenosine receptor subtype (A3AR) as novel targets for therapeutic intervention. Our work in male rodents using paclitaxel, oxaliplatin, and bortezomib showed robust inhibition of CINP with either S1PR1 antagonists or A3AR agonists. The S1PR1 functional antagonist FTY720 (Gilenya) is FDA-approved for treating multiple sclerosis, and selective A3AR agonists are in advanced clinical trials for cancer and inflammatory disorders, underscoring the need for their expedited trials in patients with CINP as chemotherapy adjuncts. Our findings reveal that S1PR1 antagonists and A3AR agonists mitigate paclitaxel and oxaliplatin CINP in female and male rodents, but failed to block or reverse bortezomib-induced neuropathic pain (BINP) in females. Although numerous mechanisms likely underlie these differences, we focused on receptor levels. We found that BINP in male rats, but not in female rats, was associated with increased expression of A3AR in the spinal cord dorsal horn, whereas S1PR1 levels were similar in both sexes. Thus, alternative mechanisms beyond receptor expression may account for sex differences in response to S1PR1 antagonists. Morphine and duloxetine, both clinical analgesics, reversed BINP in female mice, demonstrating that the lack of response is specific to S1PR1 and A3AR agents. Our findings suggest that A3AR- and S1PR1-based therapies are not viable approaches in preventing and treating BINP in females and should inform future clinical trials of these drugs as adjuncts to chemotherapy.


Subject(s)
Antineoplastic Agents/adverse effects , Bortezomib/adverse effects , Neuralgia/drug therapy , Receptor, Adenosine A3/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Spinal Cord Dorsal Horn/metabolism , Adenosine A3 Receptor Antagonists/administration & dosage , Adenosine A3 Receptor Antagonists/therapeutic use , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use , Animals , Duloxetine Hydrochloride/administration & dosage , Duloxetine Hydrochloride/therapeutic use , Female , Fingolimod Hydrochloride/administration & dosage , Fingolimod Hydrochloride/therapeutic use , Male , Morphine/administration & dosage , Morphine/therapeutic use , Neuralgia/chemically induced , Oxaliplatin/adverse effects , Paclitaxel/adverse effects , Rats , Sex Factors , Sphingosine 1 Phosphate Receptor Modulators/administration & dosage , Sphingosine 1 Phosphate Receptor Modulators/therapeutic use , Spinal Cord Dorsal Horn/drug effects
9.
J Exp Med ; 215(5): 1301-1313, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29703731

ABSTRACT

The development of chemotherapy-induced painful peripheral neuropathy is a major dose-limiting side effect of many chemotherapeutics, including bortezomib, but the mechanisms remain poorly understood. We now report that bortezomib causes the dysregulation of de novo sphingolipid metabolism in the spinal cord dorsal horn to increase the levels of sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) ligands, S1P and dihydro-S1P. Accordingly, genetic and pharmacological disruption of S1PR1 with multiple S1PR1 antagonists, including FTY720, blocked and reversed neuropathic pain. Mice with astrocyte-specific alterations of S1pr1 did not develop neuropathic pain and lost their ability to respond to S1PR1 inhibition, strongly implicating astrocytes as a primary cellular substrate for S1PR1 activity. At the molecular level, S1PR1 engaged astrocyte-driven neuroinflammation and altered glutamatergic homeostasis, processes blocked by S1PR1 antagonism. Our findings establish S1PR1 as a target for therapeutic intervention and provide insight into cellular and molecular pathways. As FTY720 also shows promising anticancer potential and is FDA approved, rapid clinical translation of our findings is anticipated.


Subject(s)
Bortezomib/adverse effects , Neuralgia/chemically induced , Neuralgia/metabolism , Sphingolipids/metabolism , Administration, Oral , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Ceramides/biosynthesis , Fingolimod Hydrochloride/administration & dosage , Fingolimod Hydrochloride/pharmacology , Glutamates/metabolism , Male , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Rats, Sprague-Dawley , Receptors, Lysosphingolipid/antagonists & inhibitors , Receptors, Lysosphingolipid/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL