Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Respir Cell Mol Biol ; 59(2): 237-245, 2018 08.
Article in English | MEDLINE | ID: mdl-29447458

ABSTRACT

Metastatic disease is the primary cause of death of patients with lung cancer, but the mouse models of lung adenocarcinoma do not accurately recapitulate the tumor microenvironment or metastatic disease observed in patients. In this study, we conditionally deleted E-cadherin in an autochthonous lung adenocarcinoma mouse model driven by activated oncogenic Kras and p53 loss. Loss of E-cadherin significantly accelerated lung adenocarcinoma progression and decreased survival of the mice. Kras;p53;E-cadherin mice had a 41% lung tumor burden, invasive grade 4 tumors, and a desmoplastic stroma just 8 weeks after tumor initiation. One hundred percent of the mice developed local metastases to the lymph nodes or chest wall, and 38% developed distant metastases to the liver or kidney. Lung adenocarcinoma cancer cell lines derived from these tumors also had high migratory rates. These studies demonstrate that the Kras;p53;E-cadherin mouse model better emulates the tumor microenvironment and metastases observed in patients with lung adenocarcinoma than previous models and may therefore be useful for studying metastasis and testing new lung cancer treatments in vivo.


Subject(s)
Adenocarcinoma/pathology , Cadherins/metabolism , Lung Neoplasms/pathology , Neoplasm Metastasis , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/genetics , Animals , Disease Models, Animal , Liver Neoplasms/pathology , Lung Neoplasms/genetics , Mice, Inbred C57BL , Neoplasm Metastasis/genetics , Proto-Oncogene Proteins p21(ras)/genetics
2.
Stem Cell Reports ; 18(1): 289-304, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36525966

ABSTRACT

Aberrant lung cell differentiation is a hallmark of many lung diseases including chronic obstructive pulmonary disease (COPD). The EZH2-containing Polycomb Repressive Complex 2 (PRC2) regulates embryonic lung stem cell fate, but its role in adult lung is obscure. Histological analysis of patient tissues revealed that loss of PRC2 activity was correlated with aberrant bronchiolar cell differentiation in COPD lung. Histological and single-cell RNA-sequencing analyses showed that loss of EZH2 in mouse lung organoids led to lowered self-renewal capability, increased squamous morphological development, and marked shifts in progenitor cell populations. Evaluation of in vivo models revealed that heterozygosity of Ezh2 in mice with ovalbumin-induced lung inflammation led to epithelial cell differentiation patterns similar to those in COPD lung. We also identified cystathionine-ß-synthase as a possible upstream factor for PRC2 destabilization. Our findings suggest that PRC2 is integral to facilitating proper lung stem cell differentiation in humans and mice.


Subject(s)
Polycomb Repressive Complex 2 , Pulmonary Disease, Chronic Obstructive , Humans , Mice , Animals , Polycomb Repressive Complex 2/genetics , Cell Differentiation/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Embryonic Stem Cells , Pulmonary Disease, Chronic Obstructive/genetics , Polycomb Repressive Complex 1
3.
Nat Commun ; 14(1): 336, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670102

ABSTRACT

Inhibitors of the Polycomb Repressive Complex 2 (PRC2) histone methyltransferase EZH2 are approved for certain cancers, but realizing their wider utility relies upon understanding PRC2 biology in each cancer system. Using a genetic model to delete Ezh2 in KRAS-driven lung adenocarcinomas, we observed that Ezh2 haplo-insufficient tumors were less lethal and lower grade than Ezh2 fully-insufficient tumors, which were poorly differentiated and metastatic. Using three-dimensional cultures and in vivo experiments, we determined that EZH2-deficient tumors were vulnerable to H3K27 demethylase or BET inhibitors. PRC2 loss/inhibition led to de-repression of FOXP2, a transcription factor that promotes migration and stemness, and FOXP2 could be suppressed by BET inhibition. Poorly differentiated human lung cancers were enriched for an H3K27me3-low state, representing a subtype that may benefit from BET inhibition as a single therapy or combined with additional EZH2 inhibition. These data highlight diverse roles of PRC2 in KRAS-driven lung adenocarcinomas, and demonstrate the utility of three-dimensional cultures for exploring epigenetic drug sensitivities for cancer.


Subject(s)
Adenocarcinoma of Lung , Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/genetics , Neoplasms/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Epigenesis, Genetic , Forkhead Transcription Factors/genetics
4.
Cell Metab ; 30(5): 903-916.e7, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31523006

ABSTRACT

Nuclear glycogen was first documented in the early 1940s, but its role in cellular physiology remained elusive. In this study, we utilized pure nuclei preparations and stable isotope tracers to define the origin and metabolic fate of nuclear glycogen. Herein, we describe a key function for nuclear glycogen in epigenetic regulation through compartmentalized pyruvate production and histone acetylation. This pathway is altered in human non-small cell lung cancers, as surgical specimens accumulate glycogen in the nucleus. We demonstrate that the decreased abundance of malin, an E3 ubiquitin ligase, impaired nuclear glycogenolysis by preventing the nuclear translocation of glycogen phosphorylase and causing nuclear glycogen accumulation. Re-introduction of malin in lung cancer cells restored nuclear glycogenolysis, increased histone acetylation, and decreased growth of cancer cells transplanted into mice. This study uncovers a previously unknown role for glycogen metabolism in the nucleus and elucidates another mechanism by which cellular metabolites control epigenetic regulation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Cell Nucleus/metabolism , Glycogenolysis/genetics , Histones/metabolism , Lung Neoplasms/metabolism , A549 Cells , Acetylation , Animals , Carbon/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Glycogen/biosynthesis , Glycogen Phosphorylase/metabolism , HEK293 Cells , Humans , Lung Neoplasms/pathology , Mice , Mice, Knockout , Mice, Nude , Transfection , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Cancer Discov ; 6(9): 1006-21, 2016 09.
Article in English | MEDLINE | ID: mdl-27312177

ABSTRACT

UNLABELLED: As a master regulator of chromatin function, the lysine methyltransferase EZH2 orchestrates transcriptional silencing of developmental gene networks. Overexpression of EZH2 is commonly observed in human epithelial cancers, such as non-small cell lung carcinoma (NSCLC), yet definitive demonstration of malignant transformation by deregulated EZH2 remains elusive. Here, we demonstrate the causal role of EZH2 overexpression in NSCLC with new genetically engineered mouse models of lung adenocarcinoma. Deregulated EZH2 silences normal developmental pathways, leading to epigenetic transformation independent of canonical growth factor pathway activation. As such, tumors feature a transcriptional program distinct from KRAS- and EGFR-mutant mouse lung cancers, but shared with human lung adenocarcinomas exhibiting high EZH2 expression. To target EZH2-dependent cancers, we developed a potent open-source EZH2 inhibitor, JQEZ5, that promoted the regression of EZH2-driven tumors in vivo, confirming oncogenic addiction to EZH2 in established tumors and providing the rationale for epigenetic therapy in a subset of lung cancer. SIGNIFICANCE: EZH2 overexpression induces murine lung cancers that are similar to human NSCLC with high EZH2 expression and low levels of phosphorylated AKT and ERK, implicating biomarkers for EZH2 inhibitor sensitivity. Our EZH2 inhibitor, JQEZ5, promotes regression of these tumors, revealing a potential role for anti-EZH2 therapy in lung cancer. Cancer Discov; 6(9); 1006-21. ©2016 AACR.See related commentary by Frankel et al., p. 949This article is highlighted in the In This Issue feature, p. 932.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chromatin/genetics , Chromatin/metabolism , Disease Models, Animal , Drug Design , Enhancer Elements, Genetic , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Magnetic Resonance Imaging , Mice , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Promoter Regions, Genetic , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL