ABSTRACT
The durability of communication with the use of brain-computer interfaces in persons with progressive neurodegenerative disease has not been extensively examined. We report on 7 years of independent at-home use of an implanted brain-computer interface for communication by a person with advanced amyotrophic lateral sclerosis (ALS), the inception of which was reported in 2016. The frequency of at-home use increased over time to compensate for gradual loss of control of an eye-gaze-tracking device, followed by a progressive decrease in use starting 6 years after implantation. At-home use ended when control of the brain-computer interface became unreliable. No signs of technical malfunction were found. Instead, the amplitude of neural signals declined, and computed tomographic imaging revealed progressive atrophy, which suggested that ALS-related neurodegeneration ultimately rendered the brain-computer interface ineffective after years of successful use, although alternative explanations are plausible. (Funded by the National Institute on Deafness and Other Communication Disorders and others; ClinicalTrials.gov number, NCT02224469.).
Subject(s)
Amyotrophic Lateral Sclerosis , Atrophy , Brain-Computer Interfaces , Female , Humans , Middle Aged , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/rehabilitation , Atrophy/diagnostic imaging , Atrophy/etiology , Atrophy/prevention & control , Brain/diagnostic imaging , Communication Aids for Disabled , Time Factors , Treatment Failure , Electrodes, ImplantedABSTRACT
In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.
Subject(s)
Electrocorticography , Subdural Space , Animals , Electrocorticography/methods , Dura Mater , Electrodes, ImplantedABSTRACT
There is ample evidence that the contralateral sensorimotor areas play an important role in movement generation, with the primary motor cortex and the primary somatosensory cortex showing a detailed spatial organization of the representation of contralateral body parts. Interestingly, there are also indications for a role of the motor cortex in controlling the ipsilateral side of the body. However, the precise function of ipsilateral sensorimotor cortex in unilateral movement control is still unclear. Here, we show hand movement representation in the ipsilateral sensorimotor hand area, in which hand gestures can be distinguished from each other and from contralateral hand gestures. High-field functional magnetic resonance imaging (fMRI) data acquired during the execution of six left- and six right-hand gestures by healthy volunteers showed ipsilateral activation mainly in the anterior section of precentral gyrus and the posterior section of the postcentral gyrus. Despite the lower activation in ipsilateral areas closer to the central sulcus, activity patterns for the 12 hand gestures could be mutually distinguished in these areas. The existence of a unique representation of ipsilateral hand movements in the human sensorimotor cortex favours the notion of transcallosal integrative processes that support optimal coordination of hand movements.
Subject(s)
Motor Cortex , Sensorimotor Cortex , Brain Mapping , Functional Laterality , Hand , Humans , Magnetic Resonance Imaging , MovementABSTRACT
There is ongoing debate regarding the extent to which human cortices are specialized for processing a given sensory input versus a given type of information, independently of the sensory source. Many neuroimaging and electrophysiological studies have reported that primary and extrastriate visual cortices respond to tactile and auditory stimulation, in addition to visual inputs, suggesting these cortices are intrinsically multisensory. In particular for tactile responses, few studies have proven neuronal processes in visual cortex in humans. Here, we assessed tactile responses in both low-level and extrastriate visual cortices using electrocorticography recordings in a human participant. Specifically, we observed significant spectral power increases in the high frequency band (30-100 Hz) in response to tactile stimuli, reportedly associated with spiking neuronal activity, in both low-level visual cortex (i.e. V2) and in the anterior part of the lateral occipital-temporal cortex. These sites were both involved in processing tactile information and responsive to visual stimulation. More generally, the present results add to a mounting literature in support of task-sensitive and sensory-independent mechanisms underlying functions like spatial, motion, and self-processing in the brain and extending from higher-level as well as to low-level cortices.
Subject(s)
Brain Mapping , Electrocorticography , Visual Cortex , Adult , Female , Humans , Photic Stimulation , Temporal Lobe , Touch , Visual Perception , Young AdultABSTRACT
For severely paralyzed people, Brain-Computer Interfaces (BCIs) can potentially replace lost motor output and provide a brain-based control signal for augmentative and alternative communication devices or neuroprosthetics. Many BCIs focus on neuronal signals acquired from the hand area of the sensorimotor cortex, employing changes in the patterns of neuronal firing or spectral power associated with one or more types of hand movement. Hand and finger movement can be described by two groups of movement features, namely kinematics (spatial and motion aspects) and kinetics (muscles and forces). Despite extensive primate and human research, it is not fully understood how these features are represented in the SMC and how they lead to the appropriate movement. Yet, the available information may provide insight into which features are most suitable for BCI control. To that purpose, the current paper provides an in-depth review on the movement features encoded in the SMC. Even though there is no consensus on how exactly the SMC generates movement, we conclude that some parameters are well represented in the SMC and can be accurately used for BCI control with discrete as well as continuous feedback. However, the vast evidence also suggests that movement should be interpreted as a combination of multiple parameters rather than isolated ones, pleading for further exploration of sensorimotor control models for accurate BCI control.
Subject(s)
Brain-Computer Interfaces , Movement/physiology , Neurons/physiology , Sensorimotor Cortex/physiology , Biomechanical Phenomena/physiology , Electroencephalography , Fingers/physiology , Humans , Magnetic Resonance Imaging , Sensorimotor Cortex/diagnostic imagingABSTRACT
Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).
Subject(s)
Amyotrophic Lateral Sclerosis/rehabilitation , Aphonia/rehabilitation , Brain-Computer Interfaces , Communication Aids for Disabled , Quadriplegia/rehabilitation , Amyotrophic Lateral Sclerosis/complications , Aphonia/etiology , Electrodes, Implanted , Female , Humans , Middle Aged , Motor Cortex , Neurological Rehabilitation/instrumentation , Quadriplegia/etiologyABSTRACT
Precise localization of electrodes is essential in the field of high-density (HD) electrocorticography (ECoG) brain signal analysis in order to accurately interpret the recorded activity in relation to functional anatomy. Current localization methods for subchronically implanted HD electrode grids involve post-operative imaging. However, for situations where post-operative imaging is not available, such as during acute measurements in awake surgery, electrode localization is complicated. Intra-operative photographs may be informative, but not for electrode grids positioned partially or fully under the skull. Here we present an automatic and unsupervised method to localize HD electrode grids that does not require post-operative imaging. The localization method, named GridLoc, is based on the hypothesis that the anatomical and vascular brain structures under the ECoG electrodes have an effect on the amplitude of the recorded ECoG signal. More specifically, we hypothesize that the spatial match between resting-state high-frequency band power (45-120â¯Hz) patterns over the grid and the anatomical features of the brain under the electrodes, such as the presence of sulci and larger blood vessels, can be used for adequate HD grid localization. We validate this hypothesis and compare the GridLoc results with electrode locations determined with post-operative imaging and/or photographs in 8 patients implanted with HD-ECoG grids. Locations agreed with an average difference of 1.94⯱â¯0.11â¯mm, which is comparable to differences reported earlier between post-operative imaging and photograph methods. The results suggest that resting-state high-frequency band activity can be used for accurate localization of HD grid electrodes on a pre-operative MRI scan and that GridLoc provides a convenient alternative to methods that rely on post-operative imaging or intra-operative photographs.
Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Electrocorticography/instrumentation , Electrodes, Implanted , Image Processing, Computer-Assisted/methods , Adolescent , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young AdultABSTRACT
Electrocorticography (ECoG) based Brain-Computer Interfaces (BCIs) have been proposed as a way to restore and replace motor function or communication in severely paralyzed people. To date, most motor-based BCIs have either focused on the sensorimotor cortex as a whole or on the primary motor cortex (M1) as a source of signals for this purpose. Still, target areas for BCI are not confined to M1, and more brain regions may provide suitable BCI control signals. A logical candidate is the primary somatosensory cortex (S1), which not only shares similar somatotopic organization to M1, but also has been suggested to have a role beyond sensory feedback during movement execution. Here, we investigated whether four complex hand gestures, taken from the American sign language alphabet, can be decoded exclusively from S1 using both spatial and temporal information. For decoding, we used the signal recorded from a small patch of cortex with subdural high-density (HD) grids in five patients with intractable epilepsy. Notably, we introduce a new method of trial alignment based on the increase of the electrophysiological response, which virtually eliminates the confounding effects of systematic and non-systematic temporal differences within and between gestures execution. Results show that S1 classification scores are high (76%), similar to those obtained from M1 (74%) and sensorimotor cortex as a whole (85%), and significantly above chance level (25%). We conclude that S1 offers characteristic spatiotemporal neuronal activation patterns that are discriminative between gestures, and that it is possible to decode gestures with high accuracy from a very small patch of cortex using subdurally implanted HD grids. The feasibility of decoding hand gestures using HD-ECoG grids encourages further investigation of implantable BCI systems for direct interaction between the brain and external devices with multiple degrees of freedom.
Subject(s)
Electrocorticography/methods , Gestures , Sign Language , Somatosensory Cortex/physiology , Adult , Brain Mapping , Brain-Computer Interfaces , Electrodes, Implanted , Epilepsy/surgery , Female , Gamma Rhythm , Hand , Humans , Male , Middle Aged , Motor Cortex/physiology , Wavelet Analysis , Young AdultABSTRACT
Subdural electrocorticography (ECoG) is a valuable technique for neuroscientific research and for emerging neurotechnological clinical applications. As ECoG grids accommodate increasing numbers of electrodes and higher densities with new manufacturing methods, the question arises at what point the benefit of higher density ECoG is outweighed by spatial oversampling. To clarify the optimal spacing between ECoG electrodes, in the current study we evaluate how ECoG grid density relates to the amount of non-shared neurophysiological information between electrode pairs, focusing on the sensorimotor cortex. We simultaneously recorded high-density (HD, 3 mm pitch) and ultra-high-density (UHD, 0.9 mm pitch) ECoG, obtained intraoperatively from six participants. We developed a new metric, the normalized differential root mean square (ndRMS), to quantify the information that is not shared between electrode pairs. The ndRMS increases with inter-electrode center-to-center distance up to 15 mm, after which it plateaus. We observed differences in ndRMS between frequency bands, which we interpret in terms of oscillations in frequencies below 32 Hz with phase differences between pairs, versus (un)correlated signal fluctuations in the frequency range above 64 Hz. The finding that UHD recordings yield significantly higher ndRMS than HD recordings is attributed to the amount of tissue sampled by each electrode. These results suggest that ECoG densities with submillimeter electrode distances are likely justified.
ABSTRACT
Background and objectives: Brain-computer interfaces ( BCIs ) hold promise as augmentative and alternative communication technology for people with severe motor and speech impairment (locked-in syndrome) due to neural disease or injury. Although such BCIs should be available 24/7, to enable communication at all times, feasibility of nocturnal BCI use has not been investigated. Here, we addressed this question using data from an individual with amyotrophic lateral sclerosis (ALS) who was implanted with an electrocorticography-based BCI that enabled the generation of click-commands for spelling words and call-caregiver signals. Methods: We investigated nocturnal dynamics of neural signal features used for BCI control, namely low ( LFB : 10-30Hz) and high frequency band power ( HFB : 65-95Hz). Additionally, we assessed the nocturnal performance of a BCI decoder that was trained on daytime data by quantifying the number of unintentional BCI activations at night. Finally, we developed and implemented a nightmode decoder that allowed the participant to call a caregiver at night, and assessed its performance. Results: Power and variance in HFB and LFB were significantly higher at night than during the day in the majority of the nights, with HFB variance being higher in 88% of nights. Daytime decoders caused 245 unintended selection-clicks and 13 unintended caregiver-calls per hour when applied to night data. The developed nightmode decoder functioned error-free in 79% of nights over a period of ±1.5 years, allowing the user to reliably call the caregiver, with unintended activations occurring only once every 12 nights. Discussion: Reliable nighttime use of a BCI requires decoders that are adjusted to sleep-related signal changes. This demonstration of a reliable BCI nightmode and its long-term use by an individual with advanced ALS underscores the importance of 24/7 BCI reliability. Trial registration: This trial is registered in clinicaltrials.gov under number NCT02224469 ( https://clinicaltrials.gov/study/NCT02224469?term=NCT02224469&rank=1 ). Date of submission to registry: August 21, 2014. Enrollment of first participant: September 7, 2015.
ABSTRACT
OBJECTIVES: The development of Brain-Computer Interfaces to restore communication (cBCIs) in people with severe motor impairment ideally relies on a close collaboration between end-users and other stakeholders, such as caregivers and researchers. Awareness about potential differences in opinion between these groups is crucial for development of usable cBCIs and access technology (AT) in general. In this study, we compared the opinions of prospective cBCI users, their caregivers and cBCI researchers regarding: (1) what applications would users like to control with a cBCI; (2) what mental strategies would users prefer to use for cBCI control; and (3) at what stage of their clinical trajectory would users like to be informed about AT and cBCIs. METHODS: We collected data from 28 individuals with locked-in syndrome, 29 of their caregivers and 28 cBCI researchers. The questionnaire was supported with animation videos to explain different cBCI concepts, the utility of which was also assessed. RESULTS: Opinions of the three groups were aligned with respect to the most desired cBCI applications, but diverged regarding mental strategies and the timing of being informed about cBCIs. Animation videos were regarded as clear and useful tools to explain cBCIs and mental strategies to end-users and other stakeholders. CONCLUSIONS: Disagreements were clear between stakeholders regarding which mental strategies users prefer to use and when they would like to be informed about cBCIs. To move forward in the development and clinical implementation of cBCIs, it will be necessary to align the research agendas with the needs of the end-users and caregivers.IMPLICATIONS FOR REHABILITATIONBrain-Computer Interfaces may offer people with severe motor impairment a brain-based and muscle-independent approach to control communication-technology. The successful development of communication BCIs (cBCIs) relies on a close collaboration between end-users and other stakeholders, such as caregivers and researchers.Our work reveals that people with locked-in syndrome (end-users), their caregivers and researchers developing cBCIs agree that direct and private forms of communication are the most desired cBCI applications, but disagree regarding the preferred mental strategies for cBCI control and when to be informed about cBCIs.Animation videos are an effective tool for providing information to individuals, independent of their level of health literacy, regarding the concept of cBCIs and mental strategies for control.The misalignment in opinions of different groups of stakeholders about cBCIs strengthens the argument for a user-centered design approach in the development of cBCIs and access technology designed for daily life usage.
Subject(s)
Brain-Computer Interfaces , Locked-In Syndrome , Humans , Caregivers , Prospective Studies , CommunicationABSTRACT
OBJECTIVE: Electrocorticography (ECoG)-based brain-computer interface (BCI) systems have the potential to improve quality of life of people with locked-in syndrome (LIS) by restoring their ability to communicate independently. Before implantation of such a system, it is important to localize ECoG electrode target regions. Here, we assessed the predictive value of functional magnetic resonance imaging (fMRI) for the localization of suitable target regions on the sensorimotor cortex for ECoG-based BCI in people with locked-in syndrome. METHODS: Three people with locked-in syndrome were implanted with a chronic, fully implantable ECoG-BCI system. We compared pre-surgical fMRI activity with post-implantation ECoG activity from areas known to be active and inactive during attempted hand movement (sensorimotor hand region and dorsolateral prefrontal cortex, respectively). RESULTS: Results showed a spatial match between fMRI activity and changes in ECoG low and high frequency band power (10 - 30 and 65 - 95 Hz, respectively) during attempted movement. Also, we found that fMRI can be used to select a sub-set of electrodes that show strong task-related signal changes that are therefore likely to generate adequate BCI control. CONCLUSIONS: Our findings indicate that fMRI is a useful non-invasive tool for the pre-surgical workup of BCI implant candidates. SIGNIFICANCE: If these results are confirmed in more BCI studies, fMRI might be used for more efficient surgical BCI procedures with focused cortical coverage and lower participant burden.
ABSTRACT
Intracranial human recordings are a valuable and rare resource of information about the brain. Making such data publicly available not only helps tackle reproducibility issues in science, it helps make more use of these valuable data. This is especially true for data collected using naturalistic tasks. Here, we describe a dataset collected from a large group of human subjects while they watched a short audiovisual film. The dataset has several unique features. First, it includes a large amount of intracranial electroencephalography (iEEG) data (51 participants, age range of 5-55 years, who all performed the same task). Second, it includes functional magnetic resonance imaging (fMRI) recordings (30 participants, age range of 7-47) during the same task. Eighteen participants performed both iEEG and fMRI versions of the task, non-simultaneously. Third, the data were acquired using a rich audiovisual stimulus, for which we provide detailed speech and video annotations. This dataset can be used to study neural mechanisms of multimodal perception and language comprehension, and similarity of neural signals across brain recording modalities.
Subject(s)
Electrocorticography , Magnetic Resonance Imaging , Adolescent , Adult , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Child , Child, Preschool , Humans , Middle Aged , Reproducibility of Results , Speech , Young AdultABSTRACT
Implantable brain-computer interfaces (BCIs) promise to be a viable means to restore communication in individuals with locked-in syndrome (LIS). In 2016, we presented the world-first fully implantable BCI system that uses subdural electrocorticography electrodes to record brain signals and a subcutaneous amplifier to transmit the signals to the outside world, and that enabled an individual with LIS to communicate via a tablet computer by selecting icons in spelling software. For future clinical implementation of implantable communication-BCIs, however, much work is still needed, for example, to validate these systems in daily life settings with more participants, and to improve the speed of communication. We believe the design and execution of future studies on these and other topics may benefit from the experience we have gained. Therefore, based on relevant literature and our own experiences, we here provide an overview of procedures, as well as recommendations, for recruitment, screening, inclusion, imaging, hospital admission, implantation, training, and support of participants with LIS, for studies on daily life implementation of implantable communication-BCIs. With this article, we not only aim to inform the BCI community about important topics of concern, but also hope to contribute to improved methodological standardization of implantable BCI research.
Subject(s)
Brain-Computer Interfaces , Locked-In Syndrome , Humans , Communication , Brain , ElectroencephalographyABSTRACT
Asynchronous motor Brain Computer Interfacing (BCI) is characterized by the continuous decoding of intended muscular activity from brain signals. Such applications have gained widespread interest for enabling users to issue commands volitionally. In conventional motor BCIs features extracted from brain signals are concatenated into vector- or matrix-based (or one-/two-way) representations. Nevertheless, when accounting for the original multimodal or multiway signal structure, decoding performance has been shown to improve jointly with result interpretability. However, as multiway decoders are notorious for the extensive computational cost to train them, conventional ones are still preferred. To curb this limitation, we introduce a novel multiway classifier, called Block-Term Tensor Classifier that inherits the improved accuracy of multiway methods while providing fast training. We show that it can outperform state-of-the-art multiway and two-way Linear Discriminant Analysis classifiers in asynchronous detection of individual finger movements from intracranial recordings, an essential feature to achieve a sense of dexterity with hand prosthetics and exoskeletons.
Subject(s)
Brain-Computer Interfaces , Electroencephalography , Brain , Fingers , MovementABSTRACT
Motion capture systems are extensively used to track human movement to study healthy and pathological movements, allowing for objective diagnosis and effective therapy of conditions that affect our motor system. Current motion capture systems typically require marker placements which is cumbersome and can lead to contrived movements.Here, we describe and evaluate our developed markerless and modular multi-camera motion capture system to record human movements in 3D. The system consists of several interconnected single-board microcomputers, each coupled to a camera (i.e., the camera modules), and one additional microcomputer, which acts as the controller. The system allows for integration with upcoming machine-learning techniques, such as DeepLabCut and AniPose. These tools convert the video frames into virtual marker trajectories and provide input for further biomechanical analysis.The system obtains a frame rate of 40 Hz with a sub-millisecond synchronization between the camera modules. We evaluated the system by recording index finger movement using six camera modules. The recordings were converted via trajectories of the bony segments into finger joint angles. The retrieved finger joint angles were compared to a marker-based system resulting in a root-mean-square error of 7.5 degrees difference for a full range metacarpophalangeal joint motion.Our system allows for out-of-the-lab motion capture studies while eliminating the need for reflective markers. The setup is modular by design, enabling various configurations for both coarse and fine movement studies, allowing for machine learning integration to automatically label the data. Although we compared our system for a small movement, this method can also be extended to full-body experiments in larger volumes.
Subject(s)
Movement , Biomechanical Phenomena , Data Collection , Humans , Motion , OrganothiophosphatesABSTRACT
Objective.Electrocorticography (ECoG) based brain-computer interfaces (BCIs) can be used to restore communication in individuals with locked-in syndrome. In motor-based BCIs, the number of degrees-of-freedom, and thus the speed of the BCI, directly depends on the number of classes that can be discriminated from the neural activity in the sensorimotor cortex. When considering minimally invasive BCI implants, the size of the subdural ECoG implant must be minimized without compromising the number of degrees-of-freedom.Approach.Here we investigated if four hand gestures could be decoded using a single ECoG strip of four consecutive electrodes spaced 1 cm apart and compared the performance between a unipolar and a bipolar montage. For that we collected data of seven individuals with intractable epilepsy implanted with ECoG grids, covering the hand region of the sensorimotor cortex. Based on the implanted grids, we generated virtual ECoG strips and compared the decoding accuracy between (a) a single unipolar electrode (Unipolar Electrode), (b) a combination of four unipolar electrodes (Unipolar Strip), (c) a single bipolar pair (Bipolar Pair) and (d) a combination of six bipolar pairs (Bipolar Strip).Main results.We show that four hand gestures can be equally well decoded using 'Unipolar Strips' (mean 67.4 ± 11.7%), 'Bipolar Strips' (mean 66.6 ± 12.1%) and 'Bipolar Pairs' (mean 67.6 ± 9.4%), while 'Unipolar Electrodes' (61.6 ± 5.9%) performed significantly worse compared to 'Unipolar Strips' and 'Bipolar Pairs'.Significance.We conclude that a single bipolar pair is a potential candidate for minimally invasive motor-based BCIs and encourage the use of ECoG as a robust and reliable BCI platform for multi-class movement decoding.
Subject(s)
Brain-Computer Interfaces , Electrocorticography , Electrodes , Electrodes, Implanted , Electroencephalography , Gestures , Hand , HumansABSTRACT
BACKGROUND: Brain-computer interfaces (BCIs) have been proposed as an assistive technology (AT) allowing people with locked-in syndrome (LIS) to use neural signals to communicate. To design a communication BCI (cBCI) that is fully accepted by the users, their opinion should be taken into consideration during the research and development process. OBJECTIVE: We assessed the preferences of prospective cBCI users regarding (1) the applications they would like to control with a cBCI, (2) the mental strategies they would prefer to use to control the cBCI, and (3) when during their clinical trajectory they would like to be informed about AT and cBCIs. Furthermore, we investigated if individuals diagnosed with progressive and sudden onset (SO) disorders differ in their opinion. METHODS: We interviewed 28 Dutch individuals with LIS during a 3-hour home visit using multiple-choice, ranking, and open questions. During the interview, participants were informed about BCIs and the possible mental strategies. RESULTS: Participants rated (in)direct forms of communication, computer use, and environmental control as the most desired cBCI applications. In addition, active cBCI control strategies were preferred over reactive strategies. Furthermore, individuals with progressive and SO disorders preferred to be informed about AT and cBCIs at the moment they would need it. CONCLUSIONS: We show that individuals diagnosed with progressive and SO disorders preferred, in general, the same applications, mental strategies, and time of information. By collecting the opinion of a large sample of individuals with LIS, this study provides valuable information to stakeholders in cBCI and other AT development.
Subject(s)
Brain-Computer Interfaces , Communication Aids for Disabled , Locked-In Syndrome/rehabilitation , Patient Preference , User-Computer Interface , Adult , Aged , Disease Progression , Female , Health Communication , Humans , Male , Middle Aged , Qualitative Research , Time FactorsABSTRACT
The objective of this study was to test the feasibility of using the dorsolateral prefrontal cortex as a signal source for brain-computer interface control in people with severe motor impairment. We implanted two individuals with locked-in syndrome with a chronic brain-computer interface designed to restore independent communication. The implanted system (Utrecht NeuroProsthesis) included electrode strips placed subdurally over the dorsolateral prefrontal cortex. In both participants, counting backwards activated the dorsolateral prefrontal cortex consistently over the course of 47 and 22 months, respectively. Moreover, both participants were able to use this signal to control a cursor in one dimension, with average accuracy scores of 78 ± 9% (standard deviation) and 71 ± 11% (chance level: 50%), respectively. Brain-computer interface control based on dorsolateral prefrontal cortex activity is feasible in people with locked-in syndrome and may become of relevance for those unable to use sensorimotor signals for control.
Subject(s)
Brain-Computer Interfaces , Cognition/physiology , Eye Movements/physiology , Locked-In Syndrome/physiopathology , Locked-In Syndrome/rehabilitation , Prefrontal Cortex/physiology , Electroencephalography , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Neuropsychological Tests , Psychomotor Performance , User-Computer InterfaceABSTRACT
OBJECTIVE: Brain-computer interfaces (BCIs) are being developed to restore reach and grasping movements of paralyzed individuals. Recent studies have shown that the kinetics of grasping movement, such as grasp force, can be successfully decoded from electrocorticography (ECoG) signals, and that the high-frequency band (HFB) power changes provide discriminative information that contribute to an accurate decoding of grasp force profiles. However, as the models used in these studies contained simultaneous information from multiple spectral features over multiple areas in the brain, it remains unclear what parameters of movement and force are encoded by the HFB signals and how these are represented temporally and spatially in the SMC. APPROACH: To investigate this, and to gain insight in the temporal dynamics of the HFB during grasping, we continuously modelled the ECoG HFB response recorded from nine individuals with epilepsy temporarily implanted with ECoG grids, who performed three different grasp force tasks. MAIN RESULTS: We show that a model based on the force onset and offset consistently provides a better fit to the HFB power responses when compared with a model based on the force magnitude, irrespective of electrode location. SIGNIFICANCE: Our results suggest that HFB power, although potentially useful for continuous decoding, is more closely related to the changes in movement. This finding may potentially contribute to the more natural decoding of grasping movement in neural prosthetics.