Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Comput Biol ; 20(2): e1010980, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329927

ABSTRACT

Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.


Subject(s)
Multiple Sclerosis , Humans , Prospective Studies , Tomography, Optical Coherence/methods , Retina , Brain , Heat-Shock Proteins
2.
J Neuroinflammation ; 20(1): 209, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705084

ABSTRACT

BACKGROUND: In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence. OBJECTIVES AND METHODS: An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g (n = 18) and 12 g (n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS). RESULTS: Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces TH1, TH17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points. CONCLUSIONS: Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc's potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.


Subject(s)
Encephalitis , Multiple Sclerosis , Humans , Animals , Mice , Acetylglucosamine/therapeutic use , Interleukin-17 , Glatiramer Acetate , Interleukin-6 , Multiple Sclerosis/drug therapy , Inflammation/drug therapy , Cytokines
3.
Ann Neurol ; 92(3): 476-485, 2022 09.
Article in English | MEDLINE | ID: mdl-35703428

ABSTRACT

OBJECTIVE: Patients with myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disease (MOGAD) suffer from severe optic neuritis (ON) leading to retinal neuro-axonal loss, which can be quantified by optical coherence tomography (OCT). We assessed whether ON-independent retinal atrophy can be detected in MOGAD. METHODS: Eighty patients with MOGAD and 139 healthy controls (HCs) were included. OCT data was acquired with (1) Spectralis spectral domain OCT (MOGAD: N = 66 and HCs: N = 103) and (2) Cirrus high-definition OCT (MOGAD: N = 14 and HCs: N = 36). Macular combined ganglion cell and inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) were quantified. RESULTS: At baseline, GCIPL and pRNFL were lower in MOGAD eyes with a history of ON (MOGAD-ON) compared with MOGAD eyes without a history of ON (MOGAD-NON) and HCs (p < 0.001). MOGAD-NON eyes had lower GCIPL volume compared to HCs (p < 0.001) in the Spectralis, but not in the Cirrus cohort. Longitudinally (follow-up up to 3 years), MOGAD-ON with ON within the last 6-12 months before baseline exhibited greater pRNFL thinning than MOGAD-ON with an ON greater than 12 months ago (p < 0.001). The overall MOGAD cohort did not exhibit faster GCIPL thinning compared with the HC cohort. INTERPRETATION: Our study suggests the absence of attack-independent retinal damage in patients with MOGAD. Yet, ongoing neuroaxonal damage or edema resolution seems to occur for up to 12 months after ON, which is longer than what has been reported with other ON forms. These findings support that the pathomechanisms underlying optic nerve involvement and the evolution of OCT retinal changes after ON is distinct in patients with MOGAD. ANN NEUROL 2022;92:476-485.


Subject(s)
Immunologic Deficiency Syndromes/complications , Myelin-Oligodendrocyte Glycoprotein/immunology , Optic Neuritis/complications , Retinal Degeneration/etiology , Case-Control Studies , Cohort Studies , Humans , Longitudinal Studies , Optic Neuritis/diagnostic imaging , Optic Neuritis/etiology , Retina/diagnostic imaging , Retinal Neurons , Tomography, Optical Coherence/methods
4.
J Neurol Neurosurg Psychiatry ; 94(7): 560-566, 2023 07.
Article in English | MEDLINE | ID: mdl-36810323

ABSTRACT

BACKGROUND: The novel optic neuritis (ON) diagnostic criteria include intereye differences (IED) of optical coherence tomography (OCT) parameters. IED has proven valuable for ON diagnosis in multiple sclerosis but has not been evaluated in aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders (AQP4+NMOSD). We evaluated the diagnostic accuracy of intereye absolute (IEAD) and percentage difference (IEPD) in AQP4+NMOSD after unilateral ON >6 months before OCT as compared with healthy controls (HC). METHODS: Twenty-eight AQP4+NMOSD after unilateral ON (NMOSD-ON), 62 HC and 45 AQP4+NMOSD without ON history (NMOSD-NON) were recruited by 13 centres as part of the international Collaborative Retrospective Study on retinal OCT in Neuromyelitis Optica study. Mean thickness of peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell and inner plexiform layer (GCIPL) were quantified by Spectralis spectral domain OCT. Threshold values of the ON diagnostic criteria (pRNFL: IEAD 5 µm, IEPD 5%; GCIPL: IEAD: 4 µm, IEPD: 4%) were evaluated using receiver operating characteristics and area under the curve (AUC) metrics. RESULTS: The discriminative power was high for NMOSD-ON versus HC for IEAD (pRNFL: AUC 0.95, specificity 82%, sensitivity 86%; GCIPL: AUC 0.93, specificity 98%, sensitivity 75%) and IEPD (pRNFL: AUC 0.96, specificity 87%, sensitivity 89%; GCIPL: AUC 0.94, specificity 96%, sensitivity 82%). The discriminative power was high/moderate for NMOSD-ON versus NMOSD-NON for IEAD (pRNFL: AUC 0.92, specificity 77%, sensitivity 86%; GCIP: AUC 0.87, specificity 85%, sensitivity 75%) and for IEPD (pRNFL: AUC 0.94, specificity 82%, sensitivity 89%; GCIP: AUC 0.88, specificity 82%, sensitivity 82%). CONCLUSIONS: Results support the validation of the IED metrics as OCT parameters of the novel diagnostic ON criteria in AQP4+NMOSD.


Subject(s)
Aquaporins , Neuromyelitis Optica , Optic Neuritis , Humans , Neuromyelitis Optica/diagnosis , Retrospective Studies , Benchmarking , Optic Neuritis/diagnosis , Tomography, Optical Coherence/methods , Autoantibodies , Aquaporin 4
5.
Cerebellum ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721679

ABSTRACT

This study aimed to identify quantitative biomarkers of motor function for cerebellar ataxia by evaluating gait and postural control using an RGB-depth camera-based motion analysis system. In 28 patients with degenerative cerebellar ataxia and 33 age- and sex-matched healthy controls, motor tasks (short-distance walk, closed feet stance, and stepping in place) were selected from a previously reported protocol, and scanned using Kinect V2 and customized software. The Clinical Assessment Scale for the Assessment and Rating of Ataxia (SARA) was also evaluated. Compared with the normal control group, the cerebellar ataxia group had slower gait speed and shorter step lengths, increased step width, and mediolateral trunk sway in the walk test (all P < 0.001). Lateral sway increased in the stance test in the ataxia group (P < 0.001). When stepping in place, the ataxia group showed higher arrhythmicity of stepping and increased stance time (P < 0.001). In the correlation analyses, the ataxia group showed a positive correlation between the total SARA score and arrhythmicity of stepping in place (r = 0.587, P = 0.001). SARA total score (r = 0.561, P = 0.002) and gait subscore (ρ = 0.556, P = 0.002) correlated with mediolateral truncal sway during walking. These results suggest that the RGB-depth camera-based motion analyses on mediolateral truncal sway during walking and arrhythmicity of stepping in place are useful digital motor biomarkers for the assessment of cerebellar ataxia, and could be utilized in future clinical trials.

6.
Eur J Neurol ; 30(4): 982-990, 2023 04.
Article in English | MEDLINE | ID: mdl-36635219

ABSTRACT

BACKGROUND AND PURPOSE: Thinning of the retinal combined ganglion cell and inner plexiform layer (GCIP) as measured by optical coherence tomography (OCT) is a common finding in patients with multiple sclerosis. This study aimed to investigate whether a single retinal OCT analysis allows prediction of future disease activity after a first demyelinating event. METHODS: This observational cohort study included 201 patients with recently diagnosed clinically isolated syndrome or relapsing-remitting multiple sclerosis from two German tertiary referral centers. Individuals underwent neurological examination, magnetic resonance imaging, and OCT at baseline and at yearly follow-up visits. RESULTS: Patients were included at a median disease duration of 2.0 months. During a median follow-up of 59 (interquartile range = 43-71) months, 82% of patients had ongoing disease activity as demonstrated by failing the no evidence of disease activity 3 (NEDA-3) criteria, and 19% presented with confirmed disability worsening. A GCIP threshold of ≤77 µm at baseline identified patients with a high risk for NEDA-3 failure (hazard ratio [HR] = 1.7, 95% confidence interval [CI] = 1.1-2.8, p = 0.04), and GCIP measures of ≤69 µm predicted disability worsening (HR = 2.2, 95% CI = 1.2-4.3, p = 0.01). Higher rates of annualized GCIP loss increased the risk for disability worsening (HR = 2.5 per 1 µm/year increase of GCIP loss, p = 0.03). CONCLUSIONS: Ganglion cell thickness as measured by OCT after the initial manifestation of multiple sclerosis may allow early risk stratification as to future disease activity and progression.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Retinal Ganglion Cells/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis/pathology , Retina/pathology , Cohort Studies , Tomography, Optical Coherence/methods
7.
Mult Scler ; 28(5): 757-767, 2022 04.
Article in English | MEDLINE | ID: mdl-34379018

ABSTRACT

BACKGROUND: Decreased motion perception has been suggested as a marker for visual pathway demyelination in optic neuritis (ON) and/or multiple sclerosis (MS). OBJECTIVES: To examine the influence of neuro-axonal damage on motion perception in MS and neuromyelitis optica spectrum disorders (NMOSD). METHODS: We analysed motion perception with numbers-from-motion (NFM), visual acuity, (multifocal (mf)) VEP, optical coherence tomography in patients with MS (n = 38, confirmatory cohort n = 43), NMOSD (n = 13) and healthy controls (n = 33). RESULTS: NFM was lower compared with controls in MS (B = -12.37, p < 0.001) and NMOSD (B = -34.5, p < 0.001). NFM was lower in ON than in non-ON eyes (B = -30.95, p = 0.041) in NMOSD, but not MS. In MS and NMOSD, lower NFM was associated with worse visual acuity (B = -139.4, p < 0.001/B = -77.2, p < 0.001) and low contrast letter acuity (B = 0.99, p = 0.002/B = 1.6, p < 0.001), thinner peripapillary retinal nerve fibre layer (B = 1.0, p < 0.001/ B = 0.92, p = 0.016) and ganglion cell/inner plexiform layer (B = 64.8, p < 0.001/B = 79.5, p = 0.006), but not with VEP P100 latencies. In the confirmatory MS cohort, lower NFM was associated with thinner retinal nerve fibre layer (B = 1.351, p < 0.001) and increased mfVEP P100 latencies (B = -1.159, p < 0.001). CONCLUSIONS: Structural neuro-axonal visual pathway damage is an important driver of motion perception impairment in MS and NMOSD.


Subject(s)
Motion Perception , Multiple Sclerosis , Neuromyelitis Optica , Optic Neuritis , Humans , Tomography, Optical Coherence/methods , Visual Pathways/diagnostic imaging
8.
BMC Neurol ; 22(1): 479, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36517734

ABSTRACT

BACKGROUND: Large-scale disease overarching longitudinal data are rare in the field of neuroimmunology. However, such data could aid early disease stratification, understanding disease etiology and ultimately improve treatment decisions. The Berlin Registry of Neuroimmunological Entities (BERLimmun) is a longitudinal prospective observational study, which aims to identify diagnostic, disease activity and prognostic markers and to elucidate the underlying pathobiology of neuroimmunological diseases. METHODS: BERLimmun is a single-center prospective observational study of planned 650 patients with neuroimmunological disease entity (e.g. but not confined to: multiple sclerosis, isolated syndromes, neuromyelitis optica spectrum disorders) and 85 healthy participants with 15 years of follow-up. The protocol comprises annual in-person visits with multimodal standardized assessments of medical history, rater-based disability staging, patient-report of lifestyle, diet, general health and disease specific symptoms, tests of motor, cognitive and visual functions, structural imaging of the neuroaxis and retina and extensive sampling of biological specimen. DISCUSSION: The BERLimmun database allows to investigate multiple key aspects of neuroimmunological diseases, such as immunological differences between diagnoses or compared to healthy participants, interrelations between findings of functional impairment and structural change, trajectories of change for different biomarkers over time and, importantly, to study determinants of the long-term disease course. BERLimmun opens an opportunity to a better understanding and distinction of neuroimmunological diseases.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Humans , Aquaporin 4 , Autoantibodies , Berlin , Longitudinal Studies , Multiple Sclerosis/diagnosis , Myelin-Oligodendrocyte Glycoprotein , Neuromyelitis Optica/diagnosis , Observational Studies as Topic , Registries
9.
J Neuroophthalmol ; 42(4): 442-453, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36049213

ABSTRACT

BACKGROUND: Spectral-domain (SD-) optical coherence tomography (OCT) can reliably measure axonal (peripapillary retinal nerve fiber layer [pRNFL]) and neuronal (macular ganglion cell + inner plexiform layer [GCIPL]) thinning in the retina. Measurements from 2 commonly used SD-OCT devices are often pooled together in multiple sclerosis (MS) studies and clinical trials despite software and segmentation algorithm differences; however, individual pRNFL and GCIPL thickness measurements are not interchangeable between devices. In some circumstances, such as in the absence of a consistent OCT segmentation algorithm across platforms, a conversion equation to transform measurements between devices may be useful to facilitate pooling of data. The availability of normative data for SD-OCT measurements is limited by the lack of a large representative world-wide sample across various ages and ethnicities. Larger international studies that evaluate the effects of age, sex, and race/ethnicity on SD-OCT measurements in healthy control participants are needed to provide normative values that reflect these demographic subgroups to provide comparisons to MS retinal degeneration. METHODS: Participants were part of an 11-site collaboration within the International Multiple Sclerosis Visual System (IMSVISUAL) consortium. SD-OCT was performed by a trained technician for healthy control subjects using Spectralis or Cirrus SD-OCT devices. Peripapillary pRNFL and GCIPL thicknesses were measured on one or both devices. Automated segmentation protocols, in conjunction with manual inspection and correction of lines delineating retinal layers, were used. A conversion equation was developed using structural equation modeling, accounting for clustering, with healthy control data from one site where participants were scanned on both devices on the same day. Normative values were evaluated, with the entire cohort, for pRNFL and GCIPL thicknesses for each decade of age, by sex, and across racial groups using generalized estimating equation (GEE) models, accounting for clustering and adjusting for within-patient, intereye correlations. Change-point analyses were performed to determine at what age pRNFL and GCIPL thicknesses exhibit accelerated rates of decline. RESULTS: The healthy control cohort (n = 546) was 54% male and had a wide distribution of ages, ranging from 18 to 87 years, with a mean (SD) age of 39.3 (14.6) years. Based on 346 control participants at a single site, the conversion equation for pRNFL was Cirrus = -5.0 + (1.0 × Spectralis global value). Based on 228 controls, the equation for GCIPL was Cirrus = -4.5 + (0.9 × Spectralis global value). Standard error was 0.02 for both equations. After the age of 40 years, there was a decline of -2.4 µm per decade in pRNFL thickness ( P < 0.001, GEE models adjusting for sex, race, and country) and -1.4 µm per decade in GCIPL thickness ( P < 0.001). There was a small difference in pRNFL thickness based on sex, with female participants having slightly higher thickness (2.6 µm, P = 0.003). There was no association between GCIPL thickness and sex. Likewise, there was no association between race/ethnicity and pRNFL or GCIPL thicknesses. CONCLUSIONS: A conversion factor may be required when using data that are derived between different SD-OCT platforms in clinical trials and observational studies; this is particularly true for smaller cross-sectional studies or when a consistent segmentation algorithm is not available. The above conversion equations can be used when pooling data from Spectralis and Cirrus SD-OCT devices for pRNFL and GCIPL thicknesses. A faster decline in retinal thickness may occur after the age of 40 years, even in the absence of significant differences across racial groups.


Subject(s)
Multiple Sclerosis , Tomography, Optical Coherence , Male , Female , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Tomography, Optical Coherence/methods , Nerve Fibers , Retinal Ganglion Cells , Cross-Sectional Studies , Multiple Sclerosis/diagnostic imaging
10.
J Biol Chem ; 295(51): 17413-17424, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33453988

ABSTRACT

Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of remyelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling, and endocytosis. GlcNAc is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting platelet-derived growth factor receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, whereas genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone)-induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identify N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggest that oral GlcNAc may be neuroprotective in demyelinating diseases like MS.


Subject(s)
Acetylglucosamine/pharmacology , Cell Differentiation , Myelin Sheath/metabolism , Neuroprotective Agents/pharmacology , Oligodendrocyte Precursor Cells/cytology , Acetylglucosamine/administration & dosage , Acetylglucosamine/therapeutic use , Administration, Oral , Animals , Biomarkers/metabolism , Demyelinating Diseases/drug therapy , Endocytosis , Female , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction
11.
J Neuroinflammation ; 18(1): 105, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33933106

ABSTRACT

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a frequently disabling neuroinflammatory syndrome with a relapsing course. Blood-based disease severity and prognostic biomarkers for NMOSD are a yet unmet clinical need. Here, we evaluated serum glial fibrillary acidic protein (sGFAP) and neurofilament light (sNfL) as disease severity and prognostic biomarkers in patients with aquaporin-4 immunoglobulin (Ig)G positive (AQP4-IgG+) NMOSD. METHODS: sGFAP and sNfL were determined by single-molecule array technology in a prospective cohort of 33 AQP4-IgG+ patients with NMOSD, 32 of which were in clinical remission at study baseline. Sixteen myelin oligodendrocyte glycoprotein IgG-positive (MOG-IgG+) patients and 38 healthy persons were included as controls. Attacks were recorded in all AQP4-IgG+ patients over a median observation period of 4.25 years. RESULTS: In patients with AQP4-IgG+ NMOSD, median sGFAP (109.2 pg/ml) was non-significantly higher than in MOG-IgG+ patients (81.1 pg/ml; p = 0.83) and healthy controls (67.7 pg/ml; p = 0.07); sNfL did not substantially differ between groups. Yet, in AQP4-IgG+, but not MOG-IgG+ patients, higher sGFAP was associated with worse clinical disability scores, including the Expanded Disability Status Scale (EDSS, standardized effect size = 1.30, p = 0.007) and Multiple Sclerosis Functional Composite (MSFC, standardized effect size = - 1.28, p = 0.01). While in AQP4-IgG+, but not MOG-IgG+ patients, baseline sGFAP and sNfL were positively associated (standardized effect size = 2.24, p = 0.001), higher sNfL was only non-significantly associated with worse EDSS (standardized effect size = 1.09, p = 0.15) and MSFC (standardized effect size = - 1.75, p = 0.06) in patients with AQP4-IgG+ NMOSD. Patients with AQP4-IgG+ NMOSD with sGFAP > 90 pg/ml at baseline had a shorter time to a future attack than those with sGFAP ≤ 90 pg/ml (adjusted hazard ratio [95% confidence interval] = 11.6 [1.3-105.6], p = 0.03). In contrast, baseline sNfL levels above the 75th age adjusted percentile were not associated with a shorter time to a future attack in patients with AQP4-IgG+ NMOSD. CONCLUSION: These findings suggest a potential role for sGFAP as biomarker for disease severity and future disease activity in patients with AQP4-IgG+ NMOSD in phases of clinical remission.


Subject(s)
Biomarkers/blood , Glial Fibrillary Acidic Protein/blood , Neurofilament Proteins/blood , Neuromyelitis Optica/blood , Adult , Aged , Autoantibodies , Female , Humans , Male , Middle Aged , Prognosis , Severity of Illness Index
12.
Cerebellum ; 20(2): 169-178, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33063293

ABSTRACT

Autosomal-dominant spinocerebellar ataxias (SCA) are neurodegenerative diseases characterized by progressive ataxia. Here, we report on neurometabolic alterations in spinocerebellar ataxia type 1 (SCA1; SCA-ATXN1) and 14 (SCA14; SCA-PRKCG) assessed by non-invasive 1H magnetic resonance spectroscopy. Three Tesla 1H magnetic resonance spectroscopy was performed in 17 SCA14, 14 SCA1 patients, and in 31 healthy volunteers. We assessed metabolites in the cerebellar vermis, right cerebellar hemisphere, pons, prefrontal, and motor cortex. Additionally, clinical characteristics were obtained for each patient to correlate them with metabolites. In SCA14, metabolic changes were restricted to the cerebellar vermis compared with widespread neurochemical alterations in SCA1. In SCA14, total N-acetylaspartate (tNAA) was reduced in the vermis by 34%. In SCA1, tNAA was reduced in the vermis (24%), cerebellar hemisphere (26%), and pons (25%). SCA14 patients showed 24% lower glutamate+glutamine (Glx) and 46% lower γ-aminobutyric acid (GABA) in the vermis, while SCA1 patients showed no alterations in Glx and GABA. SCA1 revealed a decrease of aspartate (Asp) in the vermis (62%) and an elevation in the prefrontal cortex (130%) as well as an elevation of myo-inositol (Ins) in the cerebellar hemisphere (51%) and pons (46%). No changes of Asp and Ins were detected in SCA14. Beyond, glucose (Glc) was increased in the vermis of both SCA14 (155%) and SCA1 (247%). 1H magnetic resonance spectroscopy revealed differing neurochemical profiles in SCA1 and SCA14 and confirmed metabolic changes that may be indicative for neuronal loss and dysfunctional energy metabolism. Therefore, 1H magnetic resonance spectroscopy represents a helpful tool for in-vivo tracking of disease-specific pathophysiology.


Subject(s)
Brain/metabolism , Spinocerebellar Ataxias/metabolism , Adult , Aged , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged
13.
Mult Scler ; 27(14): 2180-2190, 2021 12.
Article in English | MEDLINE | ID: mdl-33856249

ABSTRACT

BACKGROUND: Cross-sectional studies suggest normal appearing white matter (NAWM) integrity loss may lead to cortical atrophy in late-stage relapsing-remitting multiple sclerosis (MS). OBJECTIVE: To investigate the relationship between NAWM integrity and cortical thickness from first clinical presentation longitudinally. METHODS: NAWM integrity and cortical thickness were assessed with 3T magnetic resonance imaging (MRI) in 102 patients with clinically isolated syndrome or early MS (33.2 (20.1-60.1) years old, 68% female) from first clinical presentation over 2.8 ± 1.6 years. Fifty healthy controls (HCs) matched for age and sex were included. NAWM integrity was evaluated using the standardized T1w/T2w ratio (sT1w/T2w). The association between sT1w/T2w and cortical thickness was assessed using linear mixed models. The effect of disease activity was investigated using the No Evidence of Disease Activity (NEDA-3) criteria. RESULTS: At baseline, sT1w/T2w (p = 0.152) and cortical thickness (p = 0.489) did not differ from HCs. Longitudinally, decreasing sT1w/T2w was associated with cortical thickness and increasing lesion burden (marginal R2 = 0.061). The association was modulated by failing NEDA-3 (marginal R2 = 0.097). CONCLUSION: sT1w/T2w may be a useful MRI biomarker for early MS, detecting relevant NAWM damage over time using conventional MRI scans, although with less sensitivity compared to quantitative measures.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , White Matter , Adult , Brain/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Young Adult
14.
Eur Radiol ; 31(6): 4277-4284, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33241514

ABSTRACT

OBJECTIVE: We aimed to investigate the use of a myelin-sensitive MRI contrast, the standardized T1-weighted/T2-weighted (sT1w/T2w) ratio, for detecting early changes in the middle cerebellar peduncle (MCP) in cerebellar subtype multiple system atrophy (MSA-C) patients. METHODS: We included 28 MSA-C patients, including a subset of 17 MSA-C patients within 2 years of disease onset (early MSA-C), and 28 matched healthy controls. T1w and T2w scans were acquired using a 3-T MR system. The sT1w/T2w ratio in MCP was analyzed using SPM12 by utilizing a region-of-interest approach in normalized space. The diagnostic performance of the MCP sT1w/T2w ratio in discriminating MSA-C and the subgroup of early MSA-C from the matched controls was assessed. Correlation analyses were performed to evaluate the relationship between the MCP sT1w/T2w ratio and other clinical parameters including the International Cooperative Ataxia Scale (ICARS) score for quantifying cerebellar ataxia. RESULTS: Compared to controls, the sT1w/T2w ratio in the MCP was markedly lower in all (p < 0.001) MSA-C patients and 17 early (p < 0.001) MSA-C patients. The MCP sT1w/T2w ratio had high sensitivity (96%) and specificity (100%) to distinguish MSA-C from controls (area under the curve = 0.99), even for the early MSA-C group (area under the curve = 0.99; sensitivity = 94%, specificity = 100%). The MCP sT1w/T2w ratio correlated with the ICARS score in early MSA-C. CONCLUSIONS: The sT1w/T2w ratio can detect MSA-C-related changes in the MCP, even in the early stages of the disorder, and could be a sensitive biomarker for MSA-C. KEY POINTS: • The sT1w/T2w ratio can detect MSA-C-related changes in the middle cerebellar peduncle, even in the early stages of the disorder. • The middle cerebellar peduncle sT1w/T2w ratio correlated with a cerebellar ataxia score in early MSA-C patients.


Subject(s)
Middle Cerebellar Peduncle , Multiple System Atrophy , Biomarkers , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Middle Cerebellar Peduncle/diagnostic imaging , Multiple System Atrophy/diagnostic imaging
15.
Brain ; 143(4): 1127-1142, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32293668

ABSTRACT

Chronic disability in multiple sclerosis is linked to neuroaxonal degeneration. 4-aminopyridine (4-AP) is used and licensed as a symptomatic treatment to ameliorate ambulatory disability in multiple sclerosis. The presumed mode of action is via blockade of axonal voltage gated potassium channels, thereby enhancing conduction in demyelinated axons. In this study, we provide evidence that in addition to those symptomatic effects, 4-AP can prevent neuroaxonal loss in the CNS. Using in vivo optical coherence tomography imaging, visual function testing and histologic assessment, we observed a reduction in retinal neurodegeneration with 4-AP in models of experimental optic neuritis and optic nerve crush. These effects were not related to an anti-inflammatory mode of action or a direct impact on retinal ganglion cells. Rather, histology and in vitro experiments indicated 4-AP stabilization of myelin and oligodendrocyte precursor cells associated with increased nuclear translocation of the nuclear factor of activated T cells. In experimental optic neuritis, 4-AP potentiated the effects of immunomodulatory treatment with fingolimod. As extended release 4-AP is already licensed for symptomatic multiple sclerosis treatment, we performed a retrospective, multicentre optical coherence tomography study to longitudinally compare retinal neurodegeneration between 52 patients on continuous 4-AP therapy and 51 matched controls. In line with the experimental data, during concurrent 4-AP therapy, degeneration of the macular retinal nerve fibre layer was reduced over 2 years. These results indicate disease-modifying effects of 4-AP beyond symptomatic therapy and provide support for the design of a prospective clinical study using visual function and retinal structure as outcome parameters.


Subject(s)
4-Aminopyridine/pharmacology , Multiple Sclerosis/pathology , Neuroprotective Agents/pharmacology , Optic Neuritis/pathology , Retinal Degeneration/pathology , Adult , Aged , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neural Stem Cells/drug effects , Potassium Channel Blockers/pharmacology , Rats , Rats, Wistar
16.
Eur Neurol ; 84(6): 435-443, 2021.
Article in English | MEDLINE | ID: mdl-34284398

ABSTRACT

INTRODUCTION: This study aimed to use a novel MRI contrast, the standardized T1-weighted/T2-weighted (sT1w/T2w) ratio, to assess damage of the white matter and gray matter in multiple system atrophy (MSA). Furthermore, this study investigated whether the sT1w/T2w ratio was associated with cognitive impairment in MSA. METHODS: The white matter and gray matter sT1w/T2w ratio of 37 MSA patients and 19 healthy controls were measured. Correlation analyses were used to evaluate the relationship between sT1w/T2w ratio values and clinical variables, and a multivariate analysis was used to identify independent factors associated with cognitive impairment in MSA. RESULTS: MSA patients showed a higher white matter sT1w/T2w ratio value than controls (p < 0.001), and the white matter sT1w/T2w ratio value was significantly correlated with the International Cooperative Ataxia Rating Scale score (r = 0.377, p = 0.021) and the Addenbrooke's cognitive examination III score (r = -0.438, p = 0.007). Cognitively impaired MSA patients had a significantly higher white matter sT1w/T2w ratio value than cognitively preserved MSA patients (p = 0.010), and the multiple logistic regression analysis revealed that the median white matter sT1w/T2w ratio value was independently associated with cognitive impairment in MSA. CONCLUSION: The sT1w/T2w ratio is sensitive to degenerative changes in the white matter that is associated with cognitive ability in MSA patients.


Subject(s)
Cognitive Dysfunction , Multiple System Atrophy , White Matter , Cognitive Dysfunction/etiology , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Multiple System Atrophy/complications , Multiple System Atrophy/diagnostic imaging , White Matter/diagnostic imaging
17.
Ann Neurol ; 85(5): 618-629, 2019 05.
Article in English | MEDLINE | ID: mdl-30851125

ABSTRACT

OBJECTIVE: To determine the optimal thresholds for intereye differences in retinal nerve fiber and ganglion cell + inner plexiform layer thicknesses for identifying unilateral optic nerve lesions in multiple sclerosis. Current international diagnostic criteria for multiple sclerosis do not include the optic nerve as a lesion site despite frequent involvement. Optical coherence tomography detects retinal thinning associated with optic nerve lesions. METHODS: In this multicenter international study at 11 sites, optical coherence tomography was measured for patients and healthy controls as part of the International Multiple Sclerosis Visual System Consortium. High- and low-contrast acuity were also collected in a subset of participants. Presence of an optic nerve lesion for this study was defined as history of acute unilateral optic neuritis. RESULTS: Among patients (n = 1,530), receiver operating characteristic curve analysis demonstrated an optimal peripapillary retinal nerve fiber layer intereye difference threshold of 5µm and ganglion cell + inner plexiform layer threshold of 4µm for identifying unilateral optic neuritis (n = 477). Greater intereye differences in acuities were associated with greater intereye retinal layer thickness differences (p ≤ 0.001). INTERPRETATION: Intereye differences of 5µm for retinal nerve fiber layer and 4µm for macular ganglion cell + inner plexiform layer are robust thresholds for identifying unilateral optic nerve lesions. These thresholds may be useful in establishing the presence of asymptomatic and symptomatic optic nerve lesions in multiple sclerosis and could be useful in a new version of the diagnostic criteria. Our findings lend further validation for utilizing the visual system in a multiple sclerosis clinical trial setting. Ann Neurol 2019;85:618-629.


Subject(s)
Internationality , Multiple Sclerosis/diagnostic imaging , Optic Nerve/diagnostic imaging , Tomography, Optical Coherence/methods , Visual Acuity/physiology , Adolescent , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Multiple Sclerosis/epidemiology , Retinal Ganglion Cells/pathology , Retinal Neurons/pathology , Young Adult
18.
Cerebellum ; 19(4): 469-482, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32338350

ABSTRACT

Spinocerebellar ataxia type 14 (SCA-PRKCG, formerly SCA14) is a rare, slowly progressive disorder caused by conventional mutations in protein kinase Cγ (PKCγ). The disease usually manifests with ataxia, but previous reports suggested PRKCG variants in retinal pathology. To systematically investigate for the first time visual function and retinal morphology in patients with SCA-PRKCG. Seventeen patients with PRKCG variants and 17 healthy controls were prospectively recruited, of which 12 genetically confirmed SCA-PRKCG patients and 14 matched controls were analyzed. We enquired a structured history for visual symptoms. Vision-related quality of life was obtained with the National Eye Institute Visual Function Questionnaire (NEI-VFQ) including the Neuro-Ophthalmic Supplement (NOS). Participants underwent testing of visual acuity, contrast sensitivity, visual fields, and retinal morphology with optical coherence tomography (OCT). Measurements of the SCA-PRKCG group were analyzed for their association with clinical parameters (ataxia rating and disease duration). SCA-PRKCG patients rate their vision-related quality of life in NEI-VFQ significantly worse than controls. Furthermore, binocular visual acuity and contrast sensitivity were worse in SCA-PRKCG patients compared with controls. Despite this, none of the OCT measurements differed between groups. NEI-VFQ and NOS composite scores were related to ataxia severity. Additionally, we describe one patient with a genetic variant of uncertain significance in the catalytic domain of PKCγ who, unlike all confirmed SCA-PRKCG, presented with a clinically silent epitheliopathy. SCA-PRKCG patients had reduced binocular vision and vision-related quality of life. Since no structural retinal damage was found, the pathomechanism of these findings remains unclear.


Subject(s)
Spinocerebellar Ataxias/complications , Vision Disorders/genetics , Adult , Aged , Female , Humans , Male , Middle Aged , Quality of Life , Tomography, Optical Coherence , Visual Acuity
19.
Eur Radiol ; 30(9): 5048-5058, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32335748

ABSTRACT

OBJECTIVES: We aimed to evaluate optic chiasm (OC) measures as potential imaging marker for anterior optic pathway damage assessment in the context of neuromyelitis optica spectrum disorders (NMOSD). MATERIALS AND METHOD: This cross-sectional study included 39 patients exclusively with aquaporin 4-IgG seropositive NMOSD of which 25 patients had a history of optic neuritis (NMOSD-ON) and 37 age- and sex-matched healthy controls (HC). OC heights, width, and area were measured using standard 3D T1-weighted MRI. Sensitivity of these measures to detect neurodegeneration in the anterior optic pathway was assessed in receiver operating characteristics analyses. Correlation coefficients were used to assess associations with structural measures of the anterior optic pathway (optic nerve dimensions, retinal ganglion cell loss) and clinical measures (visual function and disease duration). RESULTS: OC heights and area were significantly smaller in NMOSD-ON compared to HC (NMOSD-ON vs. HC p < 0.0001). An OC area smaller than 22.5 mm2 yielded a sensitivity of 0.92 and a specificity of 0.92 in separating chiasms of NMOSD-ON from HC. OC area correlated well with structural and clinical measures in NMOSD-ON: optic nerve diameter (r = 0.4, p = 0.047), peripapillary retinal nerve fiber layer thickness (r = 0.59, p = 0.003), global visual acuity (r = - 0.57, p = 0.013), and diseases duration (r = - 0.5, p = 0.012). CONCLUSION: Our results suggest that OC measures are promising and easily accessible imaging markers for the assessment of anterior optic pathway damage. KEY POINTS: • Optic chiasm dimensions were smaller in neuromyelitis optica spectrum disorder patients compared to healthy controls. • Optic chiasm dimensions are associated with retinal measures and visual dysfunction. • The optic chiasm might be used as an easily accessible imaging marker of neurodegeneration in the anterior optic pathway with potential functional relevance.


Subject(s)
Neuromyelitis Optica/diagnostic imaging , Optic Chiasm/diagnostic imaging , Optic Nerve/diagnostic imaging , Retina/diagnostic imaging , Adult , Aged , Aquaporin 4 , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Neuromyelitis Optica/physiopathology , Optic Chiasm/pathology , Optic Neuritis , Organ Size , Retina/pathology , Retinal Ganglion Cells/pathology , Visual Acuity , Visual Pathways/diagnostic imaging , Visual Pathways/pathology
20.
BMC Neurol ; 20(1): 75, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32126977

ABSTRACT

BACKGROUND: Neuroprotection and promotion of remyelination represent important therapeutic gaps in multiple sclerosis (MS). Acute optic neuritis (ON) is a frequent MS manifestation. Based on the presence and properties of sphingosine-1-phosphate receptors (S1PR) on astrocytes and oligodendrocytes, we hypothesized that remyelination can be enhanced by treatment with fingolimod, a S1PR modulator currently licensed for relapsing-remitting MS. METHODS: MOVING was an investigator-driven, rater-blind, randomized clinical trial. Patients with acute unilateral ON, occurring as a clinically isolated syndrome or MS relapse, were randomized to 6 months of treatment with 0.5 mg oral fingolimod or subcutaneous IFN-ß 1b 250 µg every other day. The change in multifocal visual evoked potential (mfVEP) latency of the qualifying eye was examined as the primary (month 6 vs. baseline) and secondary (months 3, 6 and 12 vs. baseline) outcome. In addition, full field visual evoked potentials, visual acuity, optical coherence tomography as well as clinical relapses and measures of disability, cerebral MRI, and self-reported visual quality of life were obtained for follow-up. The study was halted due to insufficient recruitment (n = 15), and available results are reported. RESULTS: Per protocol analysis of the primary endpoint revealed a significantly larger reduction of mfVEP latency at 6 months compared to baseline with fingolimod treatment (n = 5; median decrease, 15.7 ms) than with IFN-ß 1b treatment (n = 4; median increase, 8.15 ms) (p <  0.001 for interaction). Statistical significance was maintained in the secondary endpoint analysis. Descriptive results are reported for other endpoints. CONCLUSION: Preliminary results of the MOVING trial argue in support of a beneficial effect of fingolimod on optic nerve remyelination when compared to IFN-ß treatment. Interpretation is limited by the small number of complete observations, an unexpected deterioration of the control group and a difference in baseline mfVEP latencies. The findings need to be confirmed in larger studies. TRIAL REGISTRATION: The trial was registered as EUDRA-CT 2011-004787-30 on October 26, 2012 and as NCT01647880 on July 24, 2012.


Subject(s)
Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Optic Neuritis/drug therapy , Adult , Evoked Potentials, Visual/drug effects , Female , Humans , Interferon beta-1b/therapeutic use , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL