Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Nature ; 617(7961): 599-607, 2023 May.
Article in English | MEDLINE | ID: mdl-37138086

ABSTRACT

Gliomas synaptically integrate into neural circuits1,2. Previous research has demonstrated bidirectional interactions between neurons and glioma cells, with neuronal activity driving glioma growth1-4 and gliomas increasing neuronal excitability2,5-8. Here we sought to determine how glioma-induced neuronal changes influence neural circuits underlying cognition and whether these interactions influence patient survival. Using intracranial brain recordings during lexical retrieval language tasks in awake humans together with site-specific tumour tissue biopsies and cell biology experiments, we find that gliomas remodel functional neural circuitry such that task-relevant neural responses activate tumour-infiltrated cortex well beyond the cortical regions that are normally recruited in the healthy brain. Site-directed biopsies from regions within the tumour that exhibit high functional connectivity between the tumour and the rest of the brain are enriched for a glioblastoma subpopulation that exhibits a distinct synaptogenic and neuronotrophic phenotype. Tumour cells from functionally connected regions secrete the synaptogenic factor thrombospondin-1, which contributes to the differential neuron-glioma interactions observed in functionally connected tumour regions compared with tumour regions with less functional connectivity. Pharmacological inhibition of thrombospondin-1 using the FDA-approved drug gabapentin decreases glioblastoma proliferation. The degree of functional connectivity between glioblastoma and the normal brain negatively affects both patient survival and performance in language tasks. These data demonstrate that high-grade gliomas functionally remodel neural circuits in the human brain, which both promotes tumour progression and impairs cognition.


Subject(s)
Brain Neoplasms , Glioblastoma , Neural Pathways , Humans , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Thrombospondin 1/antagonists & inhibitors , Gabapentin/pharmacology , Gabapentin/therapeutic use , Disease Progression , Cognition , Survival Rate , Wakefulness , Biopsy , Cell Proliferation/drug effects
2.
Nature ; 573(7775): 539-545, 2019 09.
Article in English | MEDLINE | ID: mdl-31534222

ABSTRACT

High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated release of growth factors promotes glioma growth, but this alone is insufficient to explain the effect that neuronal activity exerts on glioma progression. Here we show that neuron and glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified by gap junction-mediated tumour interconnections, forming an electrically coupled network. Depolarization of glioma membranes assessed by in vivo optogenetics promotes proliferation, whereas pharmacologically or genetically blocking electrochemical signalling inhibits the growth of glioma xenografts and extends mouse survival. Emphasizing the positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in the glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration into neural circuits promotes glioma progression.


Subject(s)
Brain/physiopathology , Electrical Synapses/pathology , Electrophysiological Phenomena , Glioma/physiopathology , Animals , Brain/cytology , Cell Membrane/pathology , Cell Proliferation , Gap Junctions/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Mice , Mice, Inbred NOD , Neurons/pathology , Optogenetics , Potassium/metabolism , Synaptic Transmission , Tumor Cells, Cultured
3.
Proc Natl Acad Sci U S A ; 119(44): e2123430119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279460

ABSTRACT

Human accomplishments depend on learning, and effective learning depends on consolidation. Consolidation is the process whereby new memories are gradually stored in an enduring way in the brain so that they can be available when needed. For factual or event knowledge, consolidation is thought to progress during sleep as well as during waking states and to be mediated by interactions between hippocampal and neocortical networks. However, consolidation is difficult to observe directly but rather is inferred through behavioral observations. Here, we investigated overnight memory change by measuring electrical activity in and near the hippocampus. Electroencephalographic (EEG) recordings were made in five patients from electrodes implanted to determine whether a surgical treatment could relieve their seizure disorders. One night, while each patient slept in a hospital monitoring room, we recorded electrophysiological responses to 10 to 20 specific sounds that were presented very quietly, to avoid arousal. Half of the sounds had been associated with objects and their precise spatial locations that patients learned before sleep. After sleep, we found systematic improvements in spatial recall, replicating prior results. We assume that when the sounds were presented during sleep, they reactivated and strengthened corresponding spatial memories. Notably, the sounds also elicited oscillatory intracranial EEG activity, including increases in theta, sigma, and gamma EEG bands. Gamma responses, in particular, were consistently associated with the degree of improvement in spatial memory exhibited after sleep. We thus conclude that this electrophysiological activity in the hippocampus and adjacent medial temporal cortex reflects sleep-based enhancement of memory storage.


Subject(s)
Memory Consolidation , Humans , Sleep/physiology , Mental Recall/physiology , Brain , Hippocampus/physiology , Spatial Memory
4.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34753819

ABSTRACT

Recent developments in the biology of malignant gliomas have demonstrated that glioma cells interact with neurons through both paracrine signaling and electrochemical synapses. Glioma-neuron interactions consequently modulate the excitability of local neuronal circuits, and it is unclear the extent to which glioma-infiltrated cortex can meaningfully participate in neural computations. For example, gliomas may result in a local disorganization of activity that impedes the transient synchronization of neural oscillations. Alternatively, glioma-infiltrated cortex may retain the ability to engage in synchronized activity in a manner similar to normal-appearing cortex but exhibit other altered spatiotemporal patterns of activity with subsequent impact on cognitive processing. Here, we use subdural electrocorticography to sample both normal-appearing and glioma-infiltrated cortex during speech. We find that glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex but recruits a diffuse spatial network. On a temporal scale, we show that signals from glioma-infiltrated cortex have decreased entropy, which may affect its ability to encode information during nuanced tasks such as production of monosyllabic versus polysyllabic words. Furthermore, we show that temporal decoding strategies for distinguishing monosyllabic from polysyllabic words were feasible for signals arising from normal-appearing cortex but not from glioma-infiltrated cortex. These findings inform our understanding of cognitive processing in chronic disease states and have implications for neuromodulation and prosthetics in patients with malignant gliomas.


Subject(s)
Brain Neoplasms/physiopathology , Glioma/physiopathology , Speech/physiology , Adult , Cerebral Cortex/physiopathology , Electrocorticography/methods , Humans , Neurons/physiology , Temporal Lobe/physiopathology
5.
Proc Natl Acad Sci U S A ; 117(29): 16920-16927, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32632010

ABSTRACT

Visual speech facilitates auditory speech perception, but the visual cues responsible for these benefits and the information they provide remain unclear. Low-level models emphasize basic temporal cues provided by mouth movements, but these impoverished signals may not fully account for the richness of auditory information provided by visual speech. High-level models posit interactions among abstract categorical (i.e., phonemes/visemes) or amodal (e.g., articulatory) speech representations, but require lossy remapping of speech signals onto abstracted representations. Because visible articulators shape the spectral content of speech, we hypothesized that the perceptual system might exploit natural correlations between midlevel visual (oral deformations) and auditory speech features (frequency modulations) to extract detailed spectrotemporal information from visual speech without employing high-level abstractions. Consistent with this hypothesis, we found that the time-frequency dynamics of oral resonances (formants) could be predicted with unexpectedly high precision from the changing shape of the mouth during speech. When isolated from other speech cues, speech-based shape deformations improved perceptual sensitivity for corresponding frequency modulations, suggesting that listeners could exploit this cross-modal correspondence to facilitate perception. To test whether this type of correspondence could improve speech comprehension, we selectively degraded the spectral or temporal dimensions of auditory sentence spectrograms to assess how well visual speech facilitated comprehension under each degradation condition. Visual speech produced drastically larger enhancements during spectral degradation, suggesting a condition-specific facilitation effect driven by cross-modal recovery of auditory speech spectra. The perceptual system may therefore use audiovisual correlations rooted in oral acoustics to extract detailed spectrotemporal information from visual speech.


Subject(s)
Speech Acoustics , Speech Perception , Visual Perception , Adult , Cues , Female , Humans , Lip/physiology , Male , Phonetics
6.
J Neurophysiol ; 127(6): 1547-1563, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35507478

ABSTRACT

Sounds enhance our ability to detect, localize, and respond to co-occurring visual targets. Research suggests that sounds improve visual processing by resetting the phase of ongoing oscillations in visual cortex. However, it remains unclear what information is relayed from the auditory system to visual areas and if sounds modulate visual activity even in the absence of visual stimuli (e.g., during passive listening). Using intracranial electroencephalography (iEEG) in humans, we examined the sensitivity of visual cortex to three forms of auditory information during a passive listening task: auditory onset responses, auditory offset responses, and rhythmic entrainment to sounds. Because some auditory neurons respond to both sound onsets and offsets, visual timing and duration processing may benefit from each. In addition, if auditory entrainment information is relayed to visual cortex, it could support the processing of complex stimulus dynamics that are aligned between auditory and visual stimuli. Results demonstrate that in visual cortex, amplitude-modulated sounds elicited transient onset and offset responses in multiple areas, but no entrainment to sound modulation frequencies. These findings suggest that activity in visual cortex (as measured with iEEG in response to auditory stimuli) may not be affected by temporally fine-grained auditory stimulus dynamics during passive listening (though it remains possible that this signal may be observable with simultaneous auditory-visual stimuli). Moreover, auditory responses were maximal in low-level visual cortex, potentially implicating a direct pathway for rapid interactions between auditory and visual cortices. This mechanism may facilitate perception by time-locking visual computations to environmental events marked by auditory discontinuities.NEW & NOTEWORTHY Using intracranial electroencephalography (iEEG) in humans during a passive listening task, we demonstrate that sounds modulate activity in visual cortex at both the onset and offset of sounds, which likely supports visual timing and duration processing. However, more complex auditory rate information did not affect visual activity. These findings are based on one of the largest multisensory iEEG studies to date and reveal the type of information transmitted between auditory and visual regions.


Subject(s)
Auditory Cortex , Visual Cortex , Acoustic Stimulation/methods , Auditory Cortex/physiology , Auditory Perception/physiology , Humans , Sound , Visual Cortex/physiology , Visual Perception/physiology
7.
Eur J Neurosci ; 54(9): 7301-7317, 2021 11.
Article in English | MEDLINE | ID: mdl-34587350

ABSTRACT

Speech perception is a central component of social communication. Although principally an auditory process, accurate speech perception in everyday settings is supported by meaningful information extracted from visual cues. Visual speech modulates activity in cortical areas subserving auditory speech perception including the superior temporal gyrus (STG). However, it is unknown whether visual modulation of auditory processing is a unitary phenomenon or, rather, consists of multiple functionally distinct processes. To explore this question, we examined neural responses to audiovisual speech measured from intracranially implanted electrodes in 21 patients with epilepsy. We found that visual speech modulated auditory processes in the STG in multiple ways, eliciting temporally and spatially distinct patterns of activity that differed across frequency bands. In the theta band, visual speech suppressed the auditory response from before auditory speech onset to after auditory speech onset (-93 to 500 ms) most strongly in the posterior STG. In the beta band, suppression was seen in the anterior STG from -311 to -195 ms before auditory speech onset and in the middle STG from -195 to 235 ms after speech onset. In high gamma, visual speech enhanced the auditory response from -45 to 24 ms only in the posterior STG. We interpret the visual-induced changes prior to speech onset as reflecting crossmodal prediction of speech signals. In contrast, modulations after sound onset may reflect a decrease in sustained feedforward auditory activity. These results are consistent with models that posit multiple distinct mechanisms supporting audiovisual speech perception.


Subject(s)
Auditory Cortex , Speech Perception , Acoustic Stimulation , Auditory Perception , Humans , Speech , Visual Perception
8.
Epilepsia ; 62(5): 1268-1279, 2021 05.
Article in English | MEDLINE | ID: mdl-33735460

ABSTRACT

OBJECTIVES: Focal cortical dysplasia type II (FCDII) is one of the most common underlying pathologies in patients with drug-resistant epilepsy. However, mechanistic understanding of FCDII fails to keep pace with genetic discoveries, primarily due to the significant challenge in developing a clinically relevant animal model. Conceptually and clinically important questions, such as the unknown latent period of epileptogenesis and the controversial epileptogenic zone, remain unknown in all experimental FCDII animal models, making it even more challenging to investigate the underlying epileptogenic mechanisms. METHODS: In this study, we used continuous video-electroencephalography (EEG) monitoring to detect the earliest interictal and ictal events in a clustered regularly interspaced short palindromic repeats (CRISPR)-in utero electroporation (IUE) FCDII rat model that shares genetic, pathological, and electroclinical signatures with those observed in humans. We then took advantage of in vivo local field potential (LFP) recordings to localize the epileptogenic zone in these animals. RESULTS: To the best of our knowledge, we showed for the first time that epileptiform discharges emerged during the third postnatal week, and that the first seizure occurred as early as during the fourth postnatal week. We also showed that both interictal and ictal discharges are localized within the dysplastic cortex, concordant with human clinical data. SIGNIFICANCE: Together, our work identified the temporal and spatial frame of epileptogenesis in a highly clinically relevant FCDII animal model, paving the way for mechanistic studies at molecular, cellular, and circuitry levels.


Subject(s)
Brain/physiopathology , Disease Models, Animal , Epilepsy/physiopathology , Malformations of Cortical Development, Group I/physiopathology , Animals , Humans , Rats
9.
J Cogn Neurosci ; 31(7): 1002-1017, 2019 07.
Article in English | MEDLINE | ID: mdl-30912728

ABSTRACT

Co-occurring sounds can facilitate perception of spatially and temporally correspondent visual events. Separate lines of research have identified two putatively distinct neural mechanisms underlying two types of crossmodal facilitations: Whereas crossmodal phase resetting is thought to underlie enhancements based on temporal correspondences, lateralized occipital evoked potentials (ERPs) are thought to reflect enhancements based on spatial correspondences. Here, we sought to clarify the relationship between these two effects to assess whether they reflect two distinct mechanisms or, rather, two facets of the same underlying process. To identify the neural generators of each effect, we examined crossmodal responses to lateralized sounds in visually responsive cortex of 22 patients using electrocorticographic recordings. Auditory-driven phase reset and ERP responses in visual cortex displayed similar topography, revealing significant activity in pericalcarine, inferior occipital-temporal, and posterior parietal cortex, with maximal activity in lateral occipitotemporal cortex (potentially V5/hMT+). Laterality effects showed similar but less widespread topography. To test whether lateralized and nonlateralized components of crossmodal ERPs emerged from common or distinct neural generators, we compared responses throughout visual cortex. Visual electrodes responded to both contralateral and ipsilateral sounds with a contralateral bias, suggesting that previously observed laterality effects do not emerge from a distinct neural generator but rather reflect laterality-biased responses in the same neural populations that produce phase-resetting responses. These results suggest that crossmodal phase reset and ERP responses previously found to reflect spatial and temporal facilitation in visual cortex may reflect the same underlying mechanism. We propose a new unified model to account for these and previous results.


Subject(s)
Auditory Perception/physiology , Evoked Potentials, Auditory , Evoked Potentials, Visual , Visual Cortex/physiology , Visual Perception/physiology , Acoustic Stimulation , Adolescent , Adult , Electrocorticography , Female , Functional Laterality , Humans , Male , Middle Aged , Photic Stimulation , Time Factors , Young Adult
10.
Conscious Cogn ; 70: 70-79, 2019 04.
Article in English | MEDLINE | ID: mdl-30852449

ABSTRACT

Sounds can modulate activity in visual cortex, facilitating the detection of visual targets. However, these sound-driven modulations are not thought to evoke conscious visual percepts in the general population. In individuals with synesthesia, however, multisensory interactions do lead to qualitatively different experiences such as sounds evoking flashes of light. Why, if multisensory interactions are present in all individuals, do only synesthetes experience abnormal qualia? Competing models differ in the time required for synesthetic experiences to emerge. The cross-activation model suggests synesthesia arises over months or years from the development of abnormal neural connections. Here we demonstrate that after ∼5 min of visual deprivation, sounds can evoke synesthesia-like percepts (vivid colors and Klüver form-constants) in ∼50% of non-synesthetes. These results challenge aspects of the cross-activation model and suggest that synesthesia exists as a latent feature in all individuals, manifesting when the balance of activity across the senses has been altered.


Subject(s)
Auditory Perception , Sensory Deprivation , Synesthesia , Visual Perception , Adolescent , Attention , Discrimination Learning , Female , Humans , Imagination , Male , Pattern Recognition, Visual , Young Adult
11.
Arch Sex Behav ; 46(5): 1223-1237, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27646840

ABSTRACT

While most people take identification with their body for granted, conditions such as phantom limb pain, alien hand syndrome, and xenomelia suggest that the feeling of bodily congruence is constructed and susceptible to alteration. Individuals with xenomelia typically experience one of their limbs as over-present and aversive, leading to a desire to amputate the limb. Similarly, many transgender individuals describe their untreated sexed body parts as incongruent and aversive, and many experience phantom body parts of the sex they identify with (Ramachandran, 2008). This experience may relate to differences in brain representation of the sexed body part, as suggested in xenomelia (McGeoch et al., 2011). We utilized magnetoencephalography imaging to record brain activity during somatosensory stimulation of the breast-a body part that feels incongruent to most presurgical female-to-male (FtM)-identified transgender individuals-and the hand, a body part that feels congruent. We measured the sensory evoked response in right hemisphere somatosensory and body-related brain areas and found significantly reduced activation in the supramarginal gyrus and secondary somatosensory cortex, but increased activation at the temporal pole for chest sensation in the FtM group (N = 8) relative to non-transgender females (N = 8). In addition, we found increased white matter coherence in the supramarginal gyrus and temporal pole and decreased white matter diffusivity in the anterior insula and temporal pole in the FtM group. These findings suggest that dysphoria related to gender-incongruent body parts in FtM individuals may be tied to differences in neural representation of the body and altered white matter connectivity.


Subject(s)
Perceptual Disorders , Transgender Persons , White Matter , Adult , Female , Humans , Magnetoencephalography , Male , Middle Aged , Perceptual Disorders/diagnostic imaging , Perceptual Disorders/epidemiology , Perceptual Disorders/psychology , Transgender Persons/psychology , Transgender Persons/statistics & numerical data , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
12.
J Neurophysiol ; 114(5): 3023-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26334017

ABSTRACT

Neurophysiological studies with animals suggest that sounds modulate activity in primary visual cortex in the presence of concurrent visual stimulation. Noninvasive neuroimaging studies in humans have similarly shown that sounds modulate activity in visual areas even in the absence of visual stimuli or visual task demands. However, the spatial and temporal limitations of these noninvasive methods prevent the determination of how rapidly sounds activate early visual cortex and what information about the sounds is relayed there. Using spatially and temporally precise measures of local synaptic activity acquired from depth electrodes in humans, we demonstrate that peripherally presented sounds evoke activity in the anterior portion of the contralateral, but not ipsilateral, calcarine sulcus within 28 ms of sound onset. These results suggest that auditory stimuli rapidly evoke spatially specific activity in visual cortex even in the absence of concurrent visual stimulation or visual task demands. This rapid auditory-evoked activation of primary visual cortex is likely to be mediated by subcortical pathways or direct cortical projections from auditory to visual areas.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Electrocorticography , Occipital Lobe/physiology , Visual Cortex/physiology , Acoustic Stimulation , Adult , Functional Laterality , Humans , Male , Time Factors
13.
Neurocase ; 21(1): 103-5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24433220

ABSTRACT

The brain's primary motor and primary somatosensory cortices are generally viewed as functionally distinct entities. Here we show by means of magnetoencephalography with a phantom-limb patient, that movement of the phantom hand leads to a change in the response of the primary somatosensory cortex to tactile stimulation. This change correlates with the described conscious perception and suggests a greater degree of functional unification between the primary motor and somatosensory cortices than is currently realized. We suggest that this may reflect the evolution of this part of the human brain, which is thought to have occurred from an undifferentiated sensorimotor cortex.


Subject(s)
Motor Cortex/physiopathology , Phantom Limb/physiopathology , Somatosensory Cortex/physiopathology , Touch Perception/physiology , Adult , Evoked Potentials, Somatosensory , Humans , Magnetoencephalography , Male , Physical Stimulation
14.
PLoS Biol ; 9(11): e1001205, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22131906

ABSTRACT

Synesthesia is a perceptual experience in which stimuli presented through one modality will spontaneously evoke sensations in an unrelated modality. The condition occurs from increased communication between sensory regions and is involuntary, automatic, and stable over time. While synesthesia can occur in response to drugs, sensory deprivation, or brain damage, research has largely focused on heritable variants comprising roughly 4% of the general population. Genetic research on synesthesia suggests the phenomenon is heterogeneous and polygenetic, yet it remains unclear whether synesthesia ever provided a selective advantage or is merely a byproduct of some other useful selected trait. Progress in uncovering the genetic basis of synesthesia will help us understand why synesthesia has been conserved in the population.


Subject(s)
Brain/physiology , Color Perception/physiology , Memory/physiology , Pattern Recognition, Visual/physiology , Taste/physiology , Color , Conserved Sequence , Heredity , Humans , Learning , Pedigree , Selection, Genetic/physiology
16.
Multisens Res ; 37(4-5): 341-363, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39191410

ABSTRACT

Congruent visual speech improves speech perception accuracy, particularly in noisy environments. Conversely, mismatched visual speech can alter what is heard, leading to an illusory percept that differs from the auditory and visual components, known as the McGurk effect. While prior transcranial magnetic stimulation (TMS) and neuroimaging studies have identified the left posterior superior temporal sulcus (pSTS) as a causal region involved in the generation of the McGurk effect, it remains unclear whether this region is critical only for this illusion or also for the more general benefits of congruent visual speech (e.g., increased accuracy and faster reaction times). Indeed, recent correlative research suggests that the benefits of congruent visual speech and the McGurk effect rely on largely independent mechanisms. To better understand how these different features of audiovisual integration are causally generated by the left pSTS, we used single-pulse TMS to temporarily disrupt processing within this region while subjects were presented with either congruent or incongruent (McGurk) audiovisual combinations. Consistent with past research, we observed that TMS to the left pSTS reduced the strength of the McGurk effect. Importantly, however, left pSTS stimulation had no effect on the positive benefits of congruent audiovisual speech (increased accuracy and faster reaction times), demonstrating a causal dissociation between the two processes. Our results are consistent with models proposing that the pSTS is but one of multiple critical areas supporting audiovisual speech interactions. Moreover, these data add to a growing body of evidence suggesting that the McGurk effect is an imperfect surrogate measure for more general and ecologically valid audiovisual speech behaviors.


Subject(s)
Speech Perception , Temporal Lobe , Transcranial Magnetic Stimulation , Visual Perception , Humans , Speech Perception/physiology , Male , Female , Temporal Lobe/physiology , Young Adult , Visual Perception/physiology , Adult , Reaction Time/physiology , Photic Stimulation , Acoustic Stimulation , Illusions/physiology
17.
Curr Biol ; 34(17): 4021-4032.e5, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39153482

ABSTRACT

Watching a speaker's face improves speech perception accuracy. This benefit is enabled, in part, by implicit lipreading abilities present in the general population. While it is established that lipreading can alter the perception of a heard word, it is unknown how these visual signals are represented in the auditory system or how they interact with auditory speech representations. One influential, but untested, hypothesis is that visual speech modulates the population-coded representations of phonetic and phonemic features in the auditory system. This model is largely supported by data showing that silent lipreading evokes activity in the auditory cortex, but these activations could alternatively reflect general effects of arousal or attention or the encoding of non-linguistic features such as visual timing information. This gap limits our understanding of how vision supports speech perception. To test the hypothesis that the auditory system encodes visual speech information, we acquired functional magnetic resonance imaging (fMRI) data from healthy adults and intracranial recordings from electrodes implanted in patients with epilepsy during auditory and visual speech perception tasks. Across both datasets, linear classifiers successfully decoded the identity of silently lipread words using the spatial pattern of auditory cortex responses. Examining the time course of classification using intracranial recordings, lipread words were classified at earlier time points relative to heard words, suggesting a predictive mechanism for facilitating speech. These results support a model in which the auditory system combines the joint neural distributions evoked by heard and lipread words to generate a more precise estimate of what was said.


Subject(s)
Auditory Cortex , Lipreading , Magnetic Resonance Imaging , Speech Perception , Humans , Auditory Cortex/physiology , Speech Perception/physiology , Adult , Female , Male , Young Adult , Visual Perception/physiology
18.
Article in English | MEDLINE | ID: mdl-39248466

ABSTRACT

BACKGROUND AND OBJECTIVES: Although diffuse gliomas in the primary somatosensory cortex (S1) are often considered resectable, gliomas in the primary motor cortex require motor mapping to preserve motor function. Recent evidence indicates that some somatosensory cortex neurons may trigger motor responses, necessitating refined somatosensory mapping techniques. METHODS: Using piezoelectric tactile stimulators on patients' faces and hands, we delivered 25 Hz vibrations and prompted patients to discriminate between dermatomes. Testing included areas contralateral to tumor-infiltrated and to non-tumor-infiltrated cortical regions. Sensory thresholds were determined by reducing stimulus intensity based on performance. Intraoperatively, electrocorticography electrode arrays were used to map sensory responses, and postoperative assessments evaluated sensory outcomes. RESULTS: The high-grade glioma case involved a 61-year-old man with right-sided weakness and numbness with a left parietal mass on MRI. Preoperative testing showed that the average vibratory detection threshold of the hand contralateral to the suspected tumor site was significantly higher than that of the hand contralateral to healthy cortex (P < .001). Intraoperative mapping confirmed the absence of functional involvement in cortical structures overlying the tumor. Postoperative imaging confirmed gross total resection, and sensory vibratory thresholds were normalized (P = .51). The low-grade glioma case included a 54-year-old man with a left parietal nonenhancing mass on MRI. No baseline sensory impairments were found on preoperative testing. Intraoperative mapping identified motor and sensory cortices, guiding tumor resection while preserving motor function. Postoperative MRI confirmed near-total resection, but new sensory impairments were noted in the hand and face contralateral to the resection site (P < .001). These deficits resolved by postoperative day 11, with no evidence of tumor progression on follow-up imaging. CONCLUSION: The sensory discrimination task provides a quantifiable method for assessing sensory changes and functional outcomes related to glioma. This technique enhances our understanding of how glioma infiltration remodels sensory systems and affects clinical outcomes in patients.

19.
Neuroimage ; 78: 396-401, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23611862

ABSTRACT

Our senses interact in daily life through multisensory integration, facilitating perceptual processes and behavioral responses. The neural mechanisms proposed to underlie this multisensory facilitation include anatomical connections directly linking early sensory areas, indirect connections to higher-order multisensory regions, as well as thalamic connections. Here we examine the relationship between white matter connectivity, as assessed with diffusion tensor imaging, and individual differences in multisensory facilitation and provide the first demonstration of a relationship between anatomical connectivity and multisensory processing in typically developed individuals. Using a whole-brain analysis and contrasting anatomical models of multisensory processing we found that increased connectivity between parietal regions and early sensory areas was associated with the facilitation of reaction times to multisensory (auditory-visual) stimuli. Furthermore, building on prior animal work suggesting the involvement of the superior colliculus in this process, using probabilistic tractography we determined that the strongest cortical projection area connected with the superior colliculus includes the region of connectivity implicated in our independent whole-brain analysis.


Subject(s)
Auditory Perception/physiology , Brain Mapping , Neural Pathways/physiology , Parietal Lobe/physiology , Visual Perception/physiology , Acoustic Stimulation , Diffusion Tensor Imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Photic Stimulation , Young Adult
20.
Cogn Process ; 14(4): 429-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23553317

ABSTRACT

Time-space synesthesia is a variant of sequence-space synesthesia and involves the involuntary association of months of the year with 2D and 3D spatial forms, such as arcs, circles, and ellipses. Previous studies have revealed conflicting results regarding the association between time-space synesthesia and enhanced spatial processing ability. Here, we tested 15 time-space synesthetes, and 15 non-synesthetic controls matched for age, education, and gender on standard tests of mental rotation ability, spatial working memory, and verbal working memory. Synesthetes performed better than controls on our test of mental rotation, but similarly to controls on tests of spatial and verbal working memory. Results support a dissociation between visuo-spatial imagery and spatial working memory capacity, and suggest time-space synesthesia is associated only with enhanced visuo-spatial imagery. These data are consistent with the time-space connectivity thesis that time-space synesthesia results from enhanced connectivity in the parietal lobe between regions supporting the representation of temporal sequences and those underlying visuo-spatial imagery.


Subject(s)
Imagination/physiology , Perceptual Disorders/psychology , Space Perception/physiology , Time Perception/physiology , Analysis of Variance , Female , Humans , Male , Memory, Short-Term/physiology , Motivation , Psychomotor Performance/physiology , Reaction Time/physiology , Rotation , Synesthesia , Temporal Lobe/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL