Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Biophys J ; 119(9): 1701-1705, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33080220

ABSTRACT

We report here a method for the determination of the pKa of histidine in complex or heterogeneous systems amenable to neither solid-state nor solution NMR spectroscopy. Careful synthesis of a fluorenylmethyloxycarbonyl- and trityl-protected, C2-deuterated histidine produces a vibrational-probe-equipped amino acid that can readily be incorporated into any peptide accessible by standard solid-phase methods. The frequency of the unique, Raman-active stretching vibration of this C2-D probe is a clear reporter of the protonation state of histidine. We investigate here a pH-sensitive peptide that self-assembles to form a hydrogel at neutral pH. The pKa of the lone histidine residue in the peptide, which is likely responsible for this pH-dependent behavior, cannot be investigated by NMR spectroscopy because of the supramolecular, soft nature of the gel. However, after synthesizing a C2-deuterated-histidine-containing peptide, we were able to follow the protonation state of histidine throughout a pH titration using Raman difference spectroscopy, thereby precisely determining the pKa of interest.


Subject(s)
Histidine , Spectrum Analysis, Raman , Deuterium , Hydrogels , Hydrogen-Ion Concentration
2.
Biomacromolecules ; 21(12): 4781-4794, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33170649

ABSTRACT

Self-assembling peptide-based hydrogels are a class of tunable soft materials that have been shown to be highly useful for a number of biomedical applications. The dynamic formation of the supramolecular fibrils that compose these materials has heretofore remained poorly characterized. A better understanding of this process would provide important insights into the behavior of these systems and could aid in the rational design of new peptide hydrogels. Here, we report the determination of the microscopic steps that underpin the self-assembly of a hydrogel-forming peptide, SgI37-49. Using theoretical models of linear polymerization to analyze the kinetic self-assembly data, we show that SgI37-49 fibril formation is driven by fibril-catalyzed secondary nucleation and that all the microscopic processes involved in SgI37-49 self-assembly display an enzyme-like saturation behavior. Moreover, this analysis allows us to quantify the rates of the underlying processes at different peptide concentrations and to calculate the time evolution of these reaction rates over the time course of self-assembly. We demonstrate here a new mechanistic approach for the study of self-assembling hydrogel-forming peptides, which is complementary to commonly used materials science characterization techniques.


Subject(s)
Hydrogels , Peptides , Kinetics
3.
Chem Sci ; 13(8): 2423-2439, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35310497

ABSTRACT

The pathology of Alzheimer's disease is connected to the aggregation of ß-amyloid (Aß) peptide, which in vivo exists as a number of length-variants. Truncations and extensions are found at both the N- and C-termini, relative to the most commonly studied 40- and 42-residue alloforms. Here, we investigate the aggregation of two physiologically abundant alloforms, Aß37 and Aß38, as pure peptides and in mixtures with Aß40 and Aß42. A variety of molar ratios were applied in quaternary mixtures to investigate whether a certain ratio is maximally inhibiting of the more toxic alloform Aß42. Through kinetic analysis, we show that both Aß37 and Aß38 self-assemble through an autocatalytic secondary nucleation reaction to form fibrillar ß-sheet-rich aggregates, albeit on a longer timescale than Aß40 or Aß42. Additionally, we show that the shorter alloforms co-aggregate with Aß40, affecting both the kinetics of aggregation and the resulting fibrillar ultrastructure. In contrast, neither Aß37 nor Aß38 forms co-aggregates with Aß42; however, both short alloforms reduce the rate of Aß42 aggregation in a concentration-dependent manner. Finally, we show that the aggregation of Aß42 is more significantly impeded by a combination of Aß37, Aß38, and Aß40 than by any of these alloforms independently. These results demonstrate that the aggregation of any given Aß alloform is significantly perturbed by the presence of other alloforms, particularly in heterogeneous mixtures, such as is found in the extracellular fluid of the brain.

4.
Cell Rep ; 40(13): 111408, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170828

ABSTRACT

The AAA+ protein, Skd3 (human CLPB), solubilizes proteins in the mitochondrial intermembrane space, which is critical for human health. Skd3 variants with defective protein-disaggregase activity cause severe congenital neutropenia (SCN) and 3-methylglutaconic aciduria type 7 (MGCA7). How Skd3 disaggregates proteins remains poorly understood. Here, we report a high-resolution structure of a Skd3-substrate complex. Skd3 adopts a spiral hexameric arrangement that engages substrate via pore-loop interactions in the nucleotide-binding domain (NBD). Substrate-bound Skd3 hexamers stack head-to-head via unique, adaptable ankyrin-repeat domain (ANK)-mediated interactions to form dodecamers. Deleting the ANK linker region reduces dodecamerization and disaggregase activity. We elucidate apomorphic features of the Skd3 NBD and C-terminal domain that regulate disaggregase activity. We also define how Skd3 subunits collaborate to disaggregate proteins. Importantly, SCN-linked subunits sharply inhibit disaggregase activity, whereas MGCA7-linked subunits do not. These advances illuminate Skd3 structure and mechanism, explain SCN and MGCA7 inheritance patterns, and suggest therapeutic strategies.


Subject(s)
Ankyrins , Heat-Shock Proteins , Adenosine Triphosphate/metabolism , Ankyrins/metabolism , Heat-Shock Proteins/metabolism , Humans , Models, Molecular , Nucleotides/metabolism , Protein Transport
5.
Sci Rep ; 9(1): 15589, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666546

ABSTRACT

The ability to produce new molecules of potential pharmaceutical relevance via combinatorial biosynthesis hinges on improving our understanding of acyl-carrier protein (ACP)-protein interactions. However, the weak and transient nature of these interactions makes them difficult to study using traditional spectroscopic approaches. Herein we report that converting the terminal thiol of the E. coli ACP 4'-phosphopantetheine arm into a mixed disulfide with 2-nitro-5-thiobenzoate ion (TNB-) activates this site to form a selective covalent cross-link with the active site cysteine of a cognate ketoacyl synthase (KS). The concomitant release of TNB2-, which absorbs at 412 nm, provides a visual and quantitative measure of mechanistically relevant ACP-KS interactions. The colorimetric assay can propel the engineering of biosynthetic routes to novel chemical diversity by providing a high-throughput screen for functional hybrid ACP-KS partnerships as well as the discovery of novel antimicrobial agents by enabling the rapid identification of small molecule inhibitors of ACP-KS interactions.


Subject(s)
Acyl Carrier Protein/metabolism , Colorimetry , Acyl Carrier Protein/chemistry , Catalytic Domain , Nitrobenzoates/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL