Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Immunol ; 195(3): 1129-38, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26071558

ABSTRACT

Defective placentation and subsequent placental insufficiency lead to maternal and fetal adverse pregnancy outcome, but their pathologic mechanisms are unclear, and treatment remains elusive. The mildly hypertensive BPH/5 mouse recapitulates many features of human adverse pregnancy outcome, with pregnancies characterized by fetal loss, growth restriction, abnormal placental development, and defects in maternal decidual arteries. Using this model, we show that recruitment of neutrophils triggered by complement activation at the maternal/fetal interface leads to elevation in local TNF-α levels, reduction of the essential angiogenic factor vascular endothelial growth factor, and, ultimately, abnormal placentation and fetal death. Blockade of complement with inhibitors specifically targeted to sites of complement activation, depletion of neutrophils, or blockade of TNF-α improves spiral artery remodeling and rescues pregnancies. These data underscore the importance of innate immune system activation in the pathogenesis of placental insufficiency and identify novel methods for treatment of pregnancy loss mediated by abnormal placentation.


Subject(s)
Abortion, Spontaneous/prevention & control , Complement Activation/immunology , Immunity, Innate , Neutrophils/immunology , Placental Insufficiency/prevention & control , Placentation/immunology , Tumor Necrosis Factor-alpha/metabolism , Abortion, Spontaneous/immunology , Animals , Cell Line , Complement Inactivator Proteins/pharmacology , Complement System Proteins/immunology , Disease Models, Animal , Female , Fetal Death , Fetal Growth Retardation/immunology , Humans , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/immunology , Placenta/cytology , Placental Insufficiency/immunology , Pregnancy , Trophoblasts/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
2.
BMC Genomics ; 13: 211, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22646846

ABSTRACT

BACKGROUND: Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. RESULTS: Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. CONCLUSIONS: We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation.


Subject(s)
Manduca/genetics , RNA Interference , Receptors, Odorant/antagonists & inhibitors , Animals , Contig Mapping , Gene Library , Gene Transfer Techniques , Larva/genetics , Larva/metabolism , Manduca/classification , Manduca/growth & development , Phylogeny , RNA, Double-Stranded/metabolism , Receptors, Odorant/classification , Receptors, Odorant/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL