Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
EMBO J ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907033

ABSTRACT

Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.

2.
Proc Natl Acad Sci U S A ; 119(29): e2202209119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858348

ABSTRACT

Membranous nephropathy is an autoimmune kidney disease caused by autoantibodies targeting antigens present on glomerular podocytes, instigating a cascade leading to glomerular injury. The most prevalent circulating autoantibodies in membranous nephropathy are against phospholipase A2 receptor (PLA2R), a cell surface receptor. The dominant epitope in PLA2R is located within the cysteine-rich domain, yet high-resolution structure-based mapping is lacking. In this study, we define the key nonredundant amino acids in the dominant epitope of PLA2R involved in autoantibody binding. We further describe two essential regions within the dominant epitope and spacer requirements for a synthetic peptide of the epitope for drug discovery. In addition, using cryo-electron microscopy, we have determined the high-resolution structure of PLA2R to 3.4 Å resolution, which shows that the dominant epitope and key residues within the cysteine-rich domain are accessible at the cell surface. In addition, the structure of PLA2R not only suggests a different orientation of domains but also implicates a unique immunogenic signature in PLA2R responsible for inducing autoantibody formation and recognition.


Subject(s)
Antigen Presentation , Autoantibodies , Glomerulonephritis, Membranous , Immunodominant Epitopes , Receptors, Phospholipase A2 , Autoantibodies/chemistry , Binding Sites , Cryoelectron Microscopy , Cysteine/chemistry , Glomerulonephritis, Membranous/immunology , Humans , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Protein Domains , Receptors, Phospholipase A2/chemistry , Receptors, Phospholipase A2/immunology
3.
Am J Physiol Cell Physiol ; 325(2): C519-C537, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37399500

ABSTRACT

V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, that is, to facilitate functional and mechanistic studies. However, a number of in vitro and in vivo studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.


Subject(s)
Alternative Splicing , Versicans , Extracellular Matrix , Protein Isoforms/genetics , Versicans/genetics , Humans
4.
Proc Natl Acad Sci U S A ; 117(41): 25293-25301, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989128

ABSTRACT

Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.


Subject(s)
Acetylgalactosamine/metabolism , Glycoproteins/metabolism , Acetylgalactosamine/chemistry , Gene Expression Regulation, Enzymologic , Glycosylation , Humans , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Substrate Specificity , Uridine Diphosphate N-Acetylgalactosamine/chemistry
5.
Faraday Discuss ; 240(0): 184-195, 2022 11 08.
Article in English | MEDLINE | ID: mdl-35943157

ABSTRACT

AlphaFold2 is a machine-learning based program that predicts a protein structure based on the amino acid sequence. In this article, we report on the current usages of this new tool and give examples from our work in the Coronavirus Structural Task Force. With its unprecedented accuracy, it can be utilized for the design of expression constructs, de novo protein design and the interpretation of Cryo-EM data with an atomic model. However, these methods are limited by their training data and are of limited use to predict conformational variability and fold flexibility; they also lack co-factors, post-translational modifications and multimeric complexes with oligonucleotides. They also are not always perfect in terms of chemical geometry. Nevertheless, machine learning-based fold prediction is a game changer for structural bioinformatics and experimentalists alike, with exciting developments ahead.


Subject(s)
Computational Biology , Proteins , Models, Molecular , Amino Acid Sequence , Proteins/chemistry , Machine Learning , Protein Conformation
6.
J Biol Chem ; 295(16): 5278-5291, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32144206

ABSTRACT

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous "heavy chains" (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin ß-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor ß, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering-based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.


Subject(s)
Alpha-Globulins/chemistry , Extracellular Matrix/metabolism , Immunity, Innate , Molecular Dynamics Simulation , Ovulation , Humans , Integrin beta Chains/chemistry , Protein Domains , von Willebrand Factor/chemistry
7.
Nat Chem Biol ; 12(10): 810-4, 2016 10.
Article in English | MEDLINE | ID: mdl-27526028

ABSTRACT

Dystroglycan is a highly glycosylated extracellular matrix receptor with essential functions in skeletal muscle and the nervous system. Reduced matrix binding by α-dystroglycan (α-DG) due to perturbed glycosylation is a pathological feature of several forms of muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) synthesizes the matrix-binding heteropolysaccharide [-glucuronic acid-ß1,3-xylose-α1,3-]n. Using a dual exoglycosidase digestion, we confirm that this polysaccharide is present on native α-DG from skeletal muscle. The atomic details of matrix binding were revealed by a high-resolution crystal structure of laminin-G-like (LG) domains 4 and 5 (LG4 and LG5) of laminin-α2 bound to a LARGE-synthesized oligosaccharide. A single glucuronic acid-ß1,3-xylose disaccharide repeat straddles a Ca(2+) ion in the LG4 domain, with oxygen atoms from both sugars replacing Ca(2+)-bound water molecules. The chelating binding mode accounts for the high affinity of this protein-carbohydrate interaction. These results reveal a previously uncharacterized mechanism of carbohydrate recognition and provide a structural framework for elucidating the mechanisms underlying muscular dystrophy.


Subject(s)
Dystroglycans/chemistry , Laminin/chemistry , Binding Sites , Models, Molecular , Molecular Structure
8.
J Biol Chem ; 291(48): 25004-25018, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27733683

ABSTRACT

The lymphatic vessel endothelial receptor LYVE-1 is implicated in the uptake of hyaluronan (HA) and trafficking of leukocytes to draining lymph nodes. Yet LYVE-1 has only weak affinity for hyaluronan and depends on receptor clustering and higher order ligand organization for durable binding in lymphatic endothelium. An unusual feature of LYVE-1 not found in other HA receptors is the potential to form disulfide-linked homodimers. However, their influence on function has not been investigated. Here we show LYVE-1 homodimers are the predominant configuration in lymphatic endothelium in vitro and in vivo, and formation solely requires the unpaired cysteine residue Cys-201 within the membrane-proximal domain, yielding a 15-fold higher HA binding affinity and an ∼67-fold slower off-rate than the monomer. Moreover, we show non-dimerizing LYVE-1 mutants fail to bind HA even when expressed at high densities in lymphatic endothelial cells or artificially cross-linked with antibody. Consistent with these findings, small angle X-ray scattering (SAXS) indicates the Cys-201 interchain disulfide forms a hinge that maintains the homodimer in an "open scissors" conformation, likely allowing arrangement of the two HA binding domains for mutual engagement with ligand. Finally, we demonstrate the Cys-201 interchain disulfide is highly labile, and selective reduction with TCEP-HCl disrupts LYVE-1 homodimers, ablating HA binding. These findings reveal binding is dependent not just on clustering but also on the biochemical properties of LYVE-1 homodimers. They also mark LYVE-1 as the first Link protein superfamily member requiring covalent homodimerization for function and suggest the interchain disulfide acts as a redox switch in vivo.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Lymphatic/metabolism , Hyaluronic Acid/metabolism , Protein Multimerization/physiology , Vesicular Transport Proteins/metabolism , Cysteine/genetics , Cysteine/metabolism , Disulfides/metabolism , Endothelial Cells/cytology , Endothelium, Lymphatic/cytology , Humans , Hyaluronic Acid/genetics , Oxidation-Reduction , Vesicular Transport Proteins/genetics
10.
J Biol Chem ; 290(48): 28708-23, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26468290

ABSTRACT

The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix.


Subject(s)
Cell Adhesion Molecules , Cumulus Cells/metabolism , Extracellular Matrix , Hyaluronic Acid , Oocytes/metabolism , Animals , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Extracellular Matrix/chemistry , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Mice
11.
J Biol Chem ; 289(44): 30481-30498, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25190808

ABSTRACT

Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking.


Subject(s)
C-Reactive Protein/chemistry , Extracellular Matrix/physiology , Hyaluronic Acid/chemistry , Serum Amyloid P-Component/chemistry , Alpha-Globulins/chemistry , Animals , Cell Adhesion Molecules/chemistry , Cell Line , Drosophila melanogaster , Extracellular Matrix/chemistry , Female , Humans , Ovarian Follicle/metabolism , Protein Binding
12.
J Biol Chem ; 289(9): 5619-34, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24403066

ABSTRACT

Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was (13)C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a D-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.


Subject(s)
Cell Adhesion Molecules/chemistry , Hyaluronic Acid/chemistry , Models, Molecular , Oligosaccharides/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Female , Humans , Hyaluronan Receptors/chemistry , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Hyaluronic Acid/genetics , Hyaluronic Acid/metabolism , Inflammation/genetics , Inflammation/metabolism , Oligosaccharides/genetics , Oligosaccharides/metabolism , Ovulation/genetics , Ovulation/metabolism , Protein Binding , Protein Structure, Tertiary
13.
J Biol Chem ; 288(41): 29642-53, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24005673

ABSTRACT

Under inflammatory conditions and in the matrix of the cumulus-oocyte complex, the polysaccharide hyaluronan (HA) becomes decorated covalently with heavy chains (HCs) of the serum glycoprotein inter-α-inhibitor (IαI). This alters the functional properties of the HA as well as its structural role within extracellular matrices. The covalent transfer of HCs from IαI to HA is catalyzed by TSG-6 (tumor necrosis factor-stimulated gene-6), but TSG-6 is also known as a HA cross-linker that induces condensation of the HA matrix. Here, we investigate the interplay of these two distinct functions of TSG-6 by studying the ternary interactions of IαI and TSG-6 with well defined films of end-grafted HA chains. We demonstrate that TSG-6-mediated cross-linking of HA films is impaired in the presence of IαI and that this effect suppresses the TSG-6-mediated enhancement of HA binding to CD44-positive cells. Furthermore, we find that the interaction of TSG-6 and IαI in the presence of HA gives rise to two types of complexes that independently promote the covalent transfer of heavy chains to HA. One type of complex interacts very weakly with HA and is likely to correspond to the previously reported covalent HC·TSG-6 complexes. The other type of complex is novel and binds stably but noncovalently to HA. Prolonged incubation with TSG-6 and IαI leads to HA films that contain, in addition to covalently HA-bound HCs, several tightly but noncovalently bound molecular species. These findings have important implications for understanding how the biological activities of TSG-6 are regulated, such that the presence or absence of IαI will dictate its function.


Subject(s)
Alpha-Globulins/metabolism , Cell Adhesion Molecules/metabolism , Hyaluronan Receptors/metabolism , Hyaluronic Acid/metabolism , Alpha-Globulins/chemistry , Animals , Binding Sites , Binding, Competitive , Blotting, Western , Cell Adhesion Molecules/chemistry , Cell Line , Cell Line, Tumor , Cross-Linking Reagents/chemistry , Humans , Hyaluronan Receptors/chemistry , Hyaluronic Acid/chemistry , Kinetics , Microscopy, Interference , Protein Binding , Surface Plasmon Resonance
14.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979271

ABSTRACT

Mammalian cells orchestrate signalling through interaction events on their surfaces. Proteoglycans are an intricate part of these interactions, carrying large glycosaminoglycan polysaccharides that recruit signalling molecules. Despite their importance in development, cancer and neurobiology, a relatively small number of proteoglycans have been identified. In addition to the complexity of glycan extension, biosynthetic redundancy in the first protein glycosylation step by two xylosyltransferase isoenzymes XT1 and XT2 complicates annotation of proteoglycans. Here, we develop a chemical genetic strategy that manipulates the glycan attachment site of cellular proteoglycans. By employing a tactic termed bump- and-hole engineering, we engineer the two isoenzymes XT1 and XT2 to specifically transfer a chemically modified xylose analogue to target proteins. The chemical modification contains a bioorthogonal tag, allowing the ability to visualise and profile target proteins modified by both transferases in mammalian cells. The versatility of our approach allows pinpointing glycosylation sites by tandem mass spectrometry, and exploiting the chemical handle to manufacture proteoglycans with defined GAG chains for cellular applications. Engineered XT enzymes permit a view into proteoglycan biology that is orthogonal to conventional techniques in biochemistry.

15.
Nat Commun ; 14(1): 6425, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37828045

ABSTRACT

Two major glycosaminoglycan types, heparan sulfate (HS) and chondroitin sulfate (CS), control many aspects of development and physiology in a type-specific manner. HS and CS are attached to core proteins via a common linker tetrasaccharide, but differ in their polymer backbones. How core proteins are specifically modified with HS or CS has been an enduring mystery. By reconstituting glycosaminoglycan biosynthesis in vitro, we establish that the CS-initiating N-acetylgalactosaminyltransferase CSGALNACT2 modifies all glycopeptide substrates equally, whereas the HS-initiating N-acetylglucosaminyltransferase EXTL3 is selective. Structure-function analysis reveals that acidic residues in the glycopeptide substrate and a basic exosite in EXTL3 are critical for specifying HS biosynthesis. Linker phosphorylation by the xylose kinase FAM20B accelerates linker synthesis and initiation of both HS and CS, but has no effect on the subsequent polymerisation of the backbone. Our results demonstrate that modification with CS occurs by default and must be overridden by EXTL3 to produce HS.


Subject(s)
Chondroitin Sulfates , Glycosaminoglycans , Glycosaminoglycans/metabolism , Chondroitin Sulfates/metabolism , Heparitin Sulfate/chemistry , Phosphorylation , Glycopeptides/metabolism
16.
J Biol Chem ; 286(29): 25675-86, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21596748

ABSTRACT

Tumor necrosis factor-stimulated gene-6 (TSG-6) is a hyaluronan (HA)-binding protein that plays important roles in inflammation and ovulation. TSG-6-mediated cross-linking of HA has been proposed as a functional mechanism (e.g. for regulating leukocyte adhesion), but direct evidence for cross-linking is lacking, and we know very little about its impact on HA ultrastructure. Here we used films of polymeric and oligomeric HA chains, end-grafted to a solid support, and a combination of surface-sensitive biophysical techniques to quantify the binding of TSG-6 into HA films and to correlate binding to morphological changes. We find that full-length TSG-6 binds with pronounced positive cooperativity and demonstrate that it can cross-link HA at physiologically relevant concentrations. Our data indicate that cooperative binding of full-length TSG-6 arises from HA-induced protein oligomerization and that the TSG-6 oligomers act as cross-linkers. In contrast, the HA-binding domain of TSG-6 (the Link module) alone binds without positive cooperativity and weaker than the full-length protein. Both the Link module and full-length TSG-6 condensed and rigidified HA films, and the degree of condensation scaled with the affinity between the TSG-6 constructs and HA. We propose that condensation is the result of protein-mediated HA cross-linking. Our findings firmly establish that TSG-6 is a potent HA cross-linking agent and might hence have important implications for the mechanistic understanding of the biological function of TSG-6 (e.g. in inflammation).


Subject(s)
Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Inflammation/metabolism , Protein Multimerization/drug effects , Humans , Hyaluronic Acid/metabolism , Models, Molecular , Osmolar Concentration , Protein Binding , Protein Structure, Quaternary
17.
J Biol Chem ; 286(13): 11543-54, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21278383

ABSTRACT

Actin-related proteins (Arps) are a highly conserved family of proteins that have extensive sequence and structural similarity to actin. All characterized Arps are components of large multimeric complexes associated with chromatin or the cytoskeleton. In addition, the human genome encodes five conserved but largely uncharacterized "orphan" Arps, which appear to be mostly testis-specific. Here we show that Arp7A, which has 43% sequence identity with ß-actin, forms a complex with the cytoskeletal proteins Tes and Mena in the subacrosomal layer of round spermatids. The N-terminal 65-residue extension to the actin-like fold of Arp7A interacts directly with Tes. The crystal structure of the 1-65(Arp7A)·LIM2-3(Tes)·EVH1(Mena) complex reveals that residues 28-49 of Arp7A contact the LIM2-3 domains of Tes. Two alanine residues from Arp7A that occupy equivalent apolar pockets in both LIM domains as well as an intervening GPAK linker that binds the LIM2-3 junction are critical for the Arp7A-Tes interaction. Equivalent occupied apolar pockets are also seen in the tandem LIM domain structures of LMO4 and Lhx3 bound to unrelated ligands. Our results indicate that apolar pocket interactions are a common feature of tandem LIM domain interactions, but ligand specificity is principally determined by the linker sequence.


Subject(s)
Cytoskeleton/metabolism , Homeodomain Proteins/metabolism , Microfilament Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cytoskeletal Proteins , Cytoskeleton/genetics , Homeodomain Proteins/genetics , Humans , LIM Domain Proteins , Male , Microfilament Proteins/genetics , Protein Binding/physiology , Protein Structure, Tertiary , RNA-Binding Proteins , Rats , Tumor Suppressor Proteins/genetics
18.
J Med Chem ; 65(2): 1536-1551, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35081714

ABSTRACT

Mutations of the rearranged during transfection (RET) kinase are frequently reported in cancer, which make it as an attractive therapeutic target. Herein, we discovered a series of N-trisubstituted pyrimidine derivatives as potent inhibitors for both wild-type (wt) RET and RETV804M, which is a resistant mutant for several FDA-approved inhibitors. The X-ray structure of a representative inhibitor with RET revealed that the compound binds in a unique pose that bifurcates beneath the P-loop and confirmed the compound as a type I inhibitor. Through the structure-activity relationship (SAR) study, compound 20 was identified as a lead compound, showing potent inhibition of both RET and RETV804M. Additionally, compound 20 displayed potent antiproliferative activity of CCDC6-RET-driven LC-2/ad cells. Analysis of RET phosphorylation indicated that biological activity was mediated by RET inhibition. Collectively, N-trisubstituted pyrimidine derivatives could serve as scaffolds for the discovery and development of potent inhibitors of type I RET and its gatekeeper mutant for the treatment of RET-driven cancers.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Pyrimidines/chemistry , Adenocarcinoma of Lung/pathology , Apoptosis , Cell Proliferation , Humans , Lung Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-ret/genetics , Structure-Activity Relationship , Tumor Cells, Cultured , Wound Healing
19.
J Biol Chem ; 285(23): 17681-92, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20363749

ABSTRACT

The inflammation-associated long pentraxin PTX3 plays key roles in innate immunity, female fertility, and vascular biology (e.g. it inhibits FGF2 (fibroblast growth factor 2)-mediated angiogenesis). PTX3 is composed of multiple protomers, each composed of distinct N- and C-terminal domains; however, it is not known how these are organized or contribute to its functional properties. Here, biophysical analyses reveal that PTX3 is composed of eight identical protomers, associated through disulfide bonds, forming an elongated and asymmetric, molecule with two differently sized domains interconnected by a stalk. The N-terminal region of the protomer provides the main structural determinant underlying this quaternary organization, supporting formation of a disulfide-linked tetramer and a dimer of dimers (a non-covalent tetramer), giving rise to the asymmetry of the molecule. Furthermore, the PTX3 octamer is shown to contain two FGF2 binding sites, where it is the tetramers that act as the functional units in ligand recognition. Thus, these studies provide a unifying model of the PTX3 oligomer, explaining both its quaternary organization and how this is required for its antiangiogenic function.


Subject(s)
C-Reactive Protein/physiology , Fibroblast Growth Factor 2/chemistry , Neovascularization, Pathologic , Serum Amyloid P-Component/physiology , Angiogenesis Inhibitors/pharmacology , Animals , Binding Sites , C-Reactive Protein/chemistry , CHO Cells , Cricetinae , Cricetulus , Disulfides/chemistry , Humans , Ligands , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Serum Amyloid P-Component/chemistry
20.
Structure ; 29(7): 694-708.e7, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33484636

ABSTRACT

RET receptor tyrosine kinase plays vital developmental and neuroprotective roles in metazoans. GDNF family ligands (GFLs) when bound to cognate GFRα co-receptors recognize and activate RET stimulating its cytoplasmic kinase function. The principles for RET ligand-co-receptor recognition are incompletely understood. Here, we report a crystal structure of the cadherin-like module (CLD1-4) from zebrafish RET revealing interdomain flexibility between CLD2 and CLD3. Comparison with a cryo-electron microscopy structure of a ligand-engaged zebrafish RETECD-GDNF-GFRα1a complex indicates conformational changes within a clade-specific CLD3 loop adjacent to the co-receptor. Our observations indicate that RET is a molecular clamp with a flexible calcium-dependent arm that adapts to different GFRα co-receptors, while its rigid arm recognizes a GFL dimer to align both membrane-proximal cysteine-rich domains. We also visualize linear arrays of RETECD-GDNF-GFRα1a suggesting that a conserved contact stabilizes higher-order species. Our study reveals that ligand-co-receptor recognition by RET involves both receptor plasticity and strict spacing of receptor dimers by GFL ligands.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Cadherins/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Models, Molecular , Multiprotein Complexes/chemistry , Protein Binding , Protein Conformation , Protein Domains , Proto-Oncogene Proteins c-ret/chemistry , Zebrafish Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL