ABSTRACT
Zika virus (ZIKV) is associated with severe neuropathology in neonates as well as Guillain-BarrƩ syndrome and other neurologic disorders in adults. Prolonged viral shedding has been reported in semen, suggesting the presence of anatomic viral reservoirs. Here we show that ZIKV can persist in cerebrospinal fluid (CSF) and lymph nodes (LN) of infected rhesus monkeys for weeks after virus has been cleared from peripheral blood, urine, and mucosal secretions. ZIKV-specific neutralizing antibodies correlated with rapid clearance of virus in peripheral blood but remained undetectable in CSF for the duration of the study. Viral persistence in both CSF and LN correlated with upregulation of mechanistic target of rapamycin (mTOR), proinflammatory, and anti-apoptotic signaling pathways, as well as downregulation of extracellular matrix signaling pathways. These data raise the possibility that persistent or occult neurologic and lymphoid disease may occur following clearance of peripheral virus in ZIKV-infected individuals.
Subject(s)
Zika Virus Infection/immunology , Zika Virus Infection/virology , Animals , Cerebrospinal Fluid/virology , Inflammation/immunology , Lower Gastrointestinal Tract/virology , Lymph Nodes/virology , Macaca mulatta , Signal Transduction , TOR Serine-Threonine Kinases/metabolismABSTRACT
The development of immunologic interventions that can target the viral reservoir in HIV-1-infected individuals is a major goal of HIV-1 research. However, little evidence exists that the viral reservoir can be sufficiently targeted to improve virologic control following discontinuation of antiretroviral therapy. Here we show that therapeutic vaccination with Ad26/MVA (recombinant adenovirus serotype 26 (Ad26) prime, modified vaccinia Ankara (MVA) boost) and stimulation of TLR7 (Toll-like receptor 7) improves virologic control and delays viral rebound following discontinuation of antiretroviral therapy in SIV-infected rhesus monkeys that began antiretroviral therapy during acute infection. Therapeutic vaccination with Ad26/MVA resulted in a marked increase in the magnitude and breadth of SIV-specific cellular immune responses in virologically suppressed, SIV-infected monkeys. TLR7 agonist administration led to innate immune stimulation and cellular immune activation. The combination of Ad26/MVA vaccination and TLR7 stimulation resulted in decreased levels of viral DNA in lymph nodes and peripheral blood, and improved virologic control and delayed viral rebound following discontinuation of antiretroviral therapy. The breadth of cellular immune responses correlated inversely with set point viral loads and correlated directly with time to viral rebound. These data demonstrate the potential of therapeutic vaccination combined with innate immune stimulation as a strategy aimed at a functional cure for HIV-1 infection.
Subject(s)
Adenoviridae/genetics , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Immunodeficiency Virus/immunology , Toll-Like Receptor 7/immunology , Vaccinia virus/genetics , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Animals , Anti-Retroviral Agents/administration & dosage , DNA, Viral/analysis , DNA, Viral/blood , Female , Genetic Vectors/genetics , HIV Infections/immunology , HIV Infections/therapy , Immunity, Cellular , Immunity, Innate , Macaca mulatta , Male , RNA, Viral/analysis , RNA, Viral/blood , SAIDS Vaccines/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/growth & development , Simian Immunodeficiency Virus/isolation & purification , Time Factors , Toll-Like Receptor 7/genetics , Viral Load/immunologyABSTRACT
The viral reservoir represents a critical challenge for human immunodeficiency virus type 1 (HIV-1) eradication strategies. However, it remains unclear when and where the viral reservoir is seeded during acute infection and the extent to which it is susceptible to early antiretroviral therapy (ART). Here we show that the viral reservoir is seeded rapidly after mucosal simian immunodeficiency virus (SIV) infection of rhesus monkeys and before systemic viraemia. We initiated suppressive ART in groups of monkeys on days 3, 7, 10 and 14 after intrarectal SIVMAC251 infection. Treatment with ART on day 3 blocked the emergence of viral RNA and proviral DNA in peripheral blood and also substantially reduced levels of proviral DNA in lymph nodes and gastrointestinal mucosa as compared with treatment at later time points. In addition, treatment on day 3 abrogated the induction of SIV-specific humoral and cellular immune responses. Nevertheless, after discontinuation of ART following 24 weeks of fully suppressive therapy, virus rebounded in all animals, although the monkeys that were treated on day 3 exhibited a delayed viral rebound as compared with those treated on days 7, 10 and 14. The time to viral rebound correlated with total viraemia during acute infection and with proviral DNA at the time of ART discontinuation. These data demonstrate that the viral reservoir is seeded rapidly after intrarectal SIV infection of rhesus monkeys, during the 'eclipse' phase, and before detectable viraemia. This strikingly early seeding of the refractory viral reservoir raises important new challenges for HIV-1 eradication strategies.
Subject(s)
Macaca mulatta/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/growth & development , Viral Load , Viremia/virology , Animals , Anti-Retroviral Agents/administration & dosage , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , Carrier State/drug therapy , Carrier State/virology , DNA, Viral/analysis , DNA, Viral/biosynthesis , DNA, Viral/blood , Disease Models, Animal , Female , Kinetics , Macaca mulatta/immunology , Male , Proviruses/genetics , RNA, Viral/blood , Rectum/virology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/physiology , Time Factors , Treatment Failure , Viral Load/drug effects , Viremia/drug therapy , Virus Replication/drug effectsABSTRACT
Zika virus (ZIKV) is responsible for a major ongoing epidemic in the Americas and has been causally associated with fetal microcephaly. The development of a safe and effective ZIKV vaccine is therefore an urgent global health priority. Here we demonstrate that three different vaccine platforms protect against ZIKV challenge in rhesus monkeys. A purified inactivated virus vaccine induced ZIKV-specific neutralizing antibodies and completely protected monkeys against ZIKV strains from both Brazil and Puerto Rico. Purified immunoglobulin from vaccinated monkeys also conferred passive protection in adoptive transfer studies. A plasmid DNA vaccine and a single-shot recombinant rhesus adenovirus serotype 52 vector vaccine, both expressing ZIKV premembrane and envelope, also elicited neutralizing antibodies and completely protected monkeys against ZIKV challenge. These data support the rapid clinical development of ZIKV vaccines for humans.