Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Rev Mol Cell Biol ; 25(3): 168-186, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38052923

ABSTRACT

The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.


Subject(s)
Peptide Chain Initiation, Translational , Ribosomes , Animals , Codon, Initiator/genetics , Codon, Initiator/analysis , Codon, Initiator/metabolism , Peptide Chain Initiation, Translational/genetics , Ribosomes/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Protein Biosynthesis/genetics , Mammals/genetics
2.
Mol Cell ; 63(2): 206-217, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27373335

ABSTRACT

mRNA translation initiation in eukaryotes requires the cooperation of a dozen eukaryotic initiation factors (eIFs) forming several complexes, which leads to mRNA attachment to the small ribosomal 40S subunit, mRNA scanning for start codon, and accommodation of initiator tRNA at the 40S P site. eIF3, composed of 13 subunits, 8 core (a, c, e, f, h, l, k, and m) and 5 peripheral (b, d, g, i, and j), plays a central role during this process. Here we report a cryo-electron microscopy structure of a mammalian 48S initiation complex at 5.8 Å resolution. It shows the relocation of subunits eIF3i and eIF3g to the 40S intersubunit face on the GTPase binding site, at a late stage in initiation. On the basis of a previous study, we demonstrate the relocation of eIF3b to the 40S intersubunit face, binding below the eIF2-Met-tRNAi(Met) ternary complex upon mRNA attachment. Our analysis reveals the deep rearrangement of eIF3 and unravels the molecular mechanism underlying eIF3 function in mRNA scanning and timing of ribosomal subunit joining.


Subject(s)
Codon, Initiator , Eukaryotic Initiation Factor-3/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/metabolism , Animals , Binding Sites , Eukaryotic Initiation Factor-1/chemistry , Eukaryotic Initiation Factor-1/metabolism , Eukaryotic Initiation Factor-2/chemistry , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-3/chemistry , Humans , Models, Molecular , Multiprotein Complexes , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Subunits , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Rabbits , Ribosomes/chemistry , Structure-Activity Relationship , beta-Globins/chemistry , beta-Globins/metabolism
3.
RNA Biol ; 14(10): 1279-1285, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28498001

ABSTRACT

For many years initiation and termination of mRNA translation have been studied separately. However, a direct link between these 2 isolated stages has been suggested by the fact that some initiation factors also control termination and can even promote ribosome recycling; i.e. the last stage where post-terminating 80S ribosomes are split to start a new round of initiation. Notably, it is now firmly established that, among other factors, ribosomal recycling critically requires the NTPase ABCE1. However, several earlier reports have proposed that ABCE1 also somehow participates in the initiation complex assembly. Based on an extended analysis of our recently published late-stage 48S initiation complex from rabbit, here we provide new mechanistic insights into this putative role of ABCE1 in initiation. This point of view represents the first structural evidence in which the regulatory role of the recycling factor ABCE1 in initiation is discussed and establishes a corner stone for elucidating the interplay between ABCE1 and several initiation factors during the transit from ribosomal recycling to formation of the elongation competent 80S initiation complex.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Nucleosides/chemistry , Peptide Chain Initiation, Translational , Animals , Binding Sites , Hydrolysis , Models, Molecular , Peptide Chain Termination, Translational , Peptide Elongation Factors , Peptide Initiation Factors/metabolism , Protein Binding , Rabbits , Ribosomes/metabolism
4.
Nat Struct Mol Biol ; 31(3): 455-464, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38287194

ABSTRACT

Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.


Subject(s)
Eukaryotic Initiation Factor-4F , Peptide Chain Initiation, Translational , Humans , Eukaryotic Initiation Factor-4F/genetics , Eukaryotic Initiation Factor-4F/metabolism , RNA, Messenger/metabolism , Codon, Initiator/metabolism , Ribosomes/metabolism , DNA Helicases/metabolism , Protein Biosynthesis , Eukaryotic Initiation Factor-4A/chemistry , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism
5.
Nat Commun ; 15(1): 4385, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782906

ABSTRACT

The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (∆eif1.2) markedly impeded bradyzoite cyst formation in vitro and in vivo. We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that ∆eif1.2 parasites are defective in upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in ∆eif1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasma/metabolism , Toxoplasma/genetics , Animals , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/metabolism , Mice , Mutation , Ribosomes/metabolism , Protein Biosynthesis , Female , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Differentiation , Humans
6.
Science ; 369(6508): 1220-1227, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32883864

ABSTRACT

A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48S The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40S subunit during scanning.


Subject(s)
Eukaryotic Initiation Factor-3/chemistry , Eukaryotic Initiation Factor-4F/chemistry , Peptide Chain Initiation, Translational , Adenosine Triphosphate/chemistry , Codon, Initiator , Cryoelectron Microscopy , Humans , Hydrolysis , RNA, Messenger/chemistry
7.
Structure ; 25(12): 1785-1794.e3, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29107485

ABSTRACT

Kinetoplastids are potentially lethal protozoan pathogens affecting more than 20 million people worldwide. There is a critical need for more specific targets for the development of safer anti-kinetoplastid therapeutic molecules that can replace the scarce and highly cytotoxic current drugs. The kinetoplastid ribosome represents a potential therapeutic target due to its relative structural divergence when compared with its human counterpart. However, several kinetoplastid-specific ribosomal features remain uncharacterized. Here, we present the near-atomic cryoelectron microscopy structure of a novel bona fide kinetoplastid-specific ribosomal (r-) protein (KSRP) bound to the ribosome. KSRP is an essential protein located at the solvent face of the 40S subunit, where it binds and stabilizes kinetoplastid-specific domains of rRNA, suggesting its role in ribosome integrity. KSRP also interacts with the r-protein eS6 at a region that is only conserved in kinetoplastids. The kinetoplastid-specific ribosomal environment of KSRP provides a promising target for the design of safer anti-kinetoplastidian drugs.


Subject(s)
Protozoan Proteins/chemistry , Ribosomal Proteins/chemistry , Binding Sites , Cryoelectron Microscopy , Leishmania/chemistry , Protein Binding , Protozoan Proteins/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/chemistry , Ribosome Subunits, Small, Eukaryotic/metabolism , Trypanosoma cruzi/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL