ABSTRACT
Visceral adipose tissue (VAT) is an energy store and endocrine organ critical for metabolic homeostasis. Regulatory T (Treg) cells restrain inflammation to preserve VAT homeostasis and glucose tolerance. Here, we show that the VAT harbors two distinct Treg cell populations: prototypical serum stimulation 2-positive (ST2+) Treg cells that are enriched in males and a previously uncharacterized population of C-X-C motif chemokine receptor 3-positive (CXCR3+) Treg cells that are enriched in females. We show that the transcription factors GATA-binding protein 3 and peroxisome proliferator-activated receptor-γ, together with the cytokine interleukin-33, promote the differentiation of ST2+ VAT Treg cells but repress CXCR3+ Treg cells. Conversely, the differentiation of CXCR3+ Treg cells is mediated by the cytokine interferon-γ and the transcription factor T-bet, which also antagonize ST2+ Treg cells. Finally, we demonstrate that ST2+ Treg cells preserve glucose homeostasis, whereas CXCR3+ Treg cells restrain inflammation in lean VAT and prevent glucose intolerance under high-fat diet conditions. Overall, this study defines two molecularly and developmentally distinct VAT Treg cell types with unique context- and sex-specific functions.
Subject(s)
Interleukin-1 Receptor-Like 1 Protein , T-Lymphocytes, Regulatory , Female , Male , Humans , Intra-Abdominal Fat , Cytokines , Inflammation , GlucoseABSTRACT
Macrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice. Emerging studies utilizing single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics have improved our understanding of the ontogeny, phenotype, and functional plasticity of macrophages. Overlaying the wealth of current information regarding macrophage molecular subtypes and functions has also identified novel therapeutic vulnerabilities that might drive better control of tumor-associated macrophages (TAMs). Here, we discuss the functional profiling of macrophages and provide an update of novel macrophage-targeted therapies in development.
Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Neoplasms/pathology , Macrophages/pathology , Phenotype , Tumor MicroenvironmentABSTRACT
Adipose tissue is an energy store and a dynamic endocrine organ1,2. In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism3,4. Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes5,6. Regulatory T (Treg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT7-9. Here we uncover pronounced sexual dimorphism in Treg cells in the VAT. Male VAT was enriched for Treg cells compared with female VAT, and Treg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of Treg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of Treg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident Treg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in Treg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.
Subject(s)
Gonadal Steroid Hormones/metabolism , Intra-Abdominal Fat/immunology , Sex Characteristics , T-Lymphocytes, Regulatory/immunology , Androgens/metabolism , Animals , Chemokine CCL2/immunology , Chromatin/genetics , Female , Gene Expression Regulation , Inflammation/immunology , Inflammation/metabolism , Interleukin-33/immunology , Intra-Abdominal Fat/metabolism , Male , Mice , Positive Regulatory Domain I-Binding Factor 1/metabolism , RNA-Seq , Receptors, CCR2/metabolism , Stromal Cells/cytology , Stromal Cells/immunology , Stromal Cells/metabolism , T-Lymphocytes, Regulatory/metabolism , Transcription, GeneticABSTRACT
BACKGROUND: Triple negative BCa (TNBC) is defined by a lack of expression of estrogen (ERα), progesterone (PgR) receptors and human epidermal growth factor receptor 2 (HER2) as assessed by protein expression and/or gene amplification. It makes up ~ 15% of all BCa and often has a poor prognosis. TNBC is not treated with endocrine therapies as ERα and PR negative tumors in general do not show benefit. However, a small fraction of the true TNBC tumors do show tamoxifen sensitivity, with those expressing the most common isoform of ERß1 having the most benefit. Recently, the antibodies commonly used to assess ERß1 in TNBC have been found to lack specificity, which calls into question available data regarding the proportion of TNBC that express ERß1 and any relationship to clinical outcome. METHODS: To confirm the true frequency of ERß1 in TNBC we performed robust ERß1 immunohistochemistry using the specific antibody CWK-F12 ERß1 on 156 primary TNBC cancers from patients with a median of 78 months (range 0.2-155 months) follow up. RESULTS: We found that high expression of ERß1 was not associated with increased recurrence or survival when assessed as percentage of ERß1 positive tumor cells or as Allred > 5. In contrast, the non-specific PPG5-10 antibody did show an association with recurrence and survival. CONCLUSIONS: Our data indicate that ERß1 expression in TNBC tumours does not associate with prognosis.
Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Estrogen Receptor beta/genetics , Estrogen Receptor alpha/genetics , Triple Negative Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Tamoxifen/therapeutic use , Prognosis , Receptors, Estrogen , Receptor, ErbB-2/therapeutic use , Receptors, Progesterone/metabolismABSTRACT
Estrogen receptor-positive breast cancers (ER+ BCas) are the most common form of BCa and are increasing in incidence, largely due to changes in reproductive practices in recent decades. Tamoxifen is prescribed as a component of standard-of-care endocrine therapy for the treatment and prevention of ER+ BCa. However, it is poorly tolerated, leading to low uptake of the drug in the preventative setting. Alternative therapies and preventatives for ER+ BCa are needed but development is hampered due to a paucity of syngeneic ER+ preclinical mouse models that allow pre-clinical experimentation in immunocompetent mice. Two ER-positive models, J110 and SSM3, have been reported in addition to other tumour models occasionally shown to express ER (for example 4T1.2, 67NR, EO771, D2.0R and D2A1). Here, we have assessed ER expression and protein levels in seven mouse mammary tumour cell lines and their corresponding tumours, in addition to their cellular composition, tamoxifen sensitivity and molecular phenotype. By immunohistochemical assessment, SSM3 and, to a lesser extent, 67NR cells are ER+. Using flow cytometry and transcript expression we show that SSM3 cells are luminal in nature, whilst D2.0R and J110 cells are stromal/basal. The remainder are also stromal/basal in nature; displaying a stromal or basal Epcam/CD49f FACS phenotype and stromal and basal gene expression signatures are overrepresented in their transcript profile. Consistent with a luminal identity for SSM3 cells, they also show sensitivity to tamoxifen in vitro and in vivo. In conclusion, the data indicate that the SSM3 syngeneic cell line is the only definitively ER+ mouse mammary tumour cell line widely available for pre-clinical research.
Subject(s)
Breast Neoplasms , Receptors, Estrogen , Tamoxifen , Humans , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Animals , Mice , Disease Models, Animal , Receptors, Estrogen/genetics , Tamoxifen/pharmacology , Phenotype , Immunohistochemistry , Flow Cytometry , Transcriptome , Mice, 129 Strain , RNA-Seq , Epithelial Cells , Mammary Glands, Animal/cytology , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/geneticsABSTRACT
BACKGROUND: Breast cancer (BCa) mortality is decreasing with early detection and improvement in therapies. The incidence of BCa, however, continues to increase, particularly estrogen-receptor-positive (ER +) subtypes. One of the greatest modifiers of ER + BCa risk is childbearing (parity), with BCa risk halved in young multiparous mothers. Despite convincing epidemiological data, the biology that underpins this protection remains unclear. Parity-induced protection has been postulated to be due to a decrease in mammary stem cells (MaSCs); however, reports to date have provided conflicting data. METHODS: We have completed rigorous functional testing of repopulating activity in parous mice using unfractionated and MaSC (CD24midCD49fhi)-enriched populations. We also developed a novel serial transplant method to enable us to assess self-renewal of MaSC following pregnancy. Lastly, as each pregnancy confers additional BCa protection, we subjected mice to multiple rounds of pregnancy to assess whether additional pregnancies impact MaSC activity. RESULTS: Here, we report that while repopulating activity in the mammary gland is reduced by parity in the unfractionated gland, it is not due to a loss in the classically defined MaSC (CD24+CD49fhi) numbers or function. Self-renewal was unaffected by parity and additional rounds of pregnancy also did not lead to a decrease in MaSC activity. CONCLUSIONS: Our data show instead that parity impacts on the stem-like activity of cells outside the MaSC population.
Subject(s)
Mammary Glands, Animal , Stem Cells , Animals , Female , Integrin beta1 , Mice , Parity , PregnancyABSTRACT
PURPOSE: It is well established that high mammographic density (MD), when adjusted for age and body mass index, is one of the strongest known risk factors for breast cancer (BC), and also associates with higher incidence of interval cancers in screening due to the masking of early mammographic abnormalities. Increasing research is being undertaken to determine the underlying histological and biochemical determinants of MD and their consequences for BC pathogenesis, anticipating that improved mechanistic insights may lead to novel preventative or treatment interventions. At the same time, technological advances in digital and contrast mammography are such that the validity of well-established relationships needs to be re-examined in this context. METHODS: With attention to old versus new technologies, we conducted a literature review to summarise the relationships between clinicopathologic features of BC and the density of the surrounding breast tissue on mammography, including the associations with BC biological features inclusive of subtype, and implications for the clinical disease course encompassing relapse, progression, treatment response and survival. RESULTS AND CONCLUSIONS: There is reasonable evidence to support positive relationships between high MD (HMD) and tumour size, lymph node positivity and local relapse in the absence of radiotherapy, but not between HMD and LVI, regional relapse or distant metastasis. Conflicting data exist for associations of HMD with tumour location, grade, intrinsic subtype, receptor status, second primary incidence and survival, which need further confirmatory studies. We did not identify any relationships that did not hold up when data involving newer imaging techniques were employed in analysis.
Subject(s)
Breast Density , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Phenotype , Biomarkers, Tumor , Breast Neoplasms/mortality , Female , Humans , Image Processing, Computer-Assisted , Mass Screening/methods , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Staging , Neoplasms, Second Primary/diagnosis , Neoplasms, Second Primary/epidemiology , Neoplasms, Second Primary/etiology , Prognosis , Public Health Surveillance , Risk FactorsABSTRACT
BACKGROUND: Epidemiological studies have consistently shown that increased mammographic density (MD) is a strong risk factor for breast cancer. We previously observed an elevated number of vimentin+/CD45+ leukocytes in high MD (HMD) epithelium. In the present study, we aimed to investigate the subtypes of immune cell infiltrates in HMD and low MD (LMD) breast tissue. METHODS: Fifty-four women undergoing prophylactic mastectomy at Peter MacCallum Cancer Centre or St. Vincent's Hospital were enrolled. Upon completion of mastectomy, HMD and LMD areas were resected under radiological guidance in collaboration with BreastScreen Victoria and were subsequently fixed, processed, and sectioned. Fifteen paired HMD and LMD specimens were further selected according to their fibroglandular characteristics (reasonable amount [> 20%] of tissue per block on H&E stains) for subsequent IHC analysis of immune cell infiltration. RESULTS: Overall, immune cell infiltrates were predominantly present in breast ducts and lobules rather than in the stroma, with CD68+ macrophages and CD20+ B lymphocytes also surrounding the vasculature. Macrophages, dendritic cells (DCs), B lymphocytes, and programmed cell death protein 1 (PD-1) expression were significantly increased in HMD epithelium compared with LMD. Moreover, significantly higher levels of DCs, CD4+ T cells, and PD-1 were also observed in HMD stroma than in LMD stroma. The increased expression of interleukin (IL)-6 and IL-4, with unaltered interferon-γ, indicate a proinflammatory microenvironment. CONCLUSIONS: Our work indicates that the immune system may be activated very early in breast cancer development and may in part underpin the breast cancer risk associated with HMD.
Subject(s)
Breast Density , Breast Neoplasms/prevention & control , Breast/pathology , Inflammation/immunology , Adult , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast/diagnostic imaging , Breast/immunology , Breast/surgery , Breast Neoplasms/genetics , Cohort Studies , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epithelium/immunology , Epithelium/pathology , Female , Humans , Inflammation/diagnostic imaging , Inflammation/pathology , Macrophages/immunology , Macrophages/metabolism , Mammography , Middle Aged , Mutation , PTEN Phosphohydrolase/genetics , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Prophylactic MastectomyABSTRACT
Mammography screening has increased the detection of early pre-invasive breast cancers, termed ductal carcinoma in situ (DCIS), increasing the urgency of identifying molecular regulators of invasion as prognostic markers to predict local relapse. Using the MMTV-PyMT breast cancer model and pharmacological protease inhibitors, we reveal that cysteine cathepsins have important roles in early-stage tumorigenesis. To characterize the cell-specific roles of cathepsins in early invasion, we developed a DCIS-like model, incorporating an immortalized myoepithelial cell line (N1ME) that restrained tumor cell invasion in 3D culture. Using this model, we identified an important myoepithelial-specific function of the cysteine cathepsin inhibitor stefin A in suppressing invasion, whereby targeted stefin A loss in N1ME cells blocked myoepithelial-induced suppression of breast cancer cell invasion. Enhanced invasion observed in 3D cultures with N1ME stefin A-low cells was reliant on cathepsin B activation, as addition of the small molecule inhibitor CA-074 rescued the DCIS-like non-invasive phenotype. Importantly, we confirmed that stefin A was indeed abundant in myoepithelial cells in breast tissue. Use of a 138-patient cohort confirmed that myoepithelial stefin A (cystatin A) is abundant in normal breast ducts and low-grade DCIS but reduced in high-grade DCIS, supporting myoepithelial stefin A as a candidate marker of lower risk of invasive relapse. We have therefore identified myoepithelial cell stefin A as a suppressor of early tumor invasion and a candidate marker to distinguish patients who are at low risk of developing invasive breast cancer, and can therefore be spared further treatment. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Carcinoma, Intraductal, Noninfiltrating/metabolism , Cell Movement , Cystatin A/metabolism , Epithelial Cells/metabolism , Mammary Glands, Human/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/drug therapy , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Coculture Techniques , Cystatin A/genetics , Cysteine Proteinase Inhibitors/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Female , Humans , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Glands, Human/drug effects , Mammary Glands, Human/pathology , Mice , Neoplasm Invasiveness , RNA Interference , Signal Transduction , Transfection , Tumor Microenvironment , Tumor Suppressor Proteins/geneticsABSTRACT
BACKGROUND: Macrophages play diverse roles in mammary gland development and breast cancer. CC-chemokine ligand 2 (CCL2) is an inflammatory cytokine that recruits macrophages to sites of injury. Although CCL2 has been detected in human and mouse mammary epithelium, its role in regulating mammary gland development and cancer risk has not been explored. METHODS: Transgenic mice were generated wherein CCL2 is driven by the mammary epithelial cell-specific mouse mammary tumour virus 206 (MMTV) promoter. Estrous cycles were tracked in adult transgenic and non-transgenic FVB mice, and mammary glands collected at the four different stages of the cycle. Dissected mammary glands were assessed for cyclical morphological changes, proliferation and apoptosis of epithelium, macrophage abundance and collagen deposition, and mRNA encoding matrix remodelling enzymes. Another cohort of control and transgenic mice received carcinogen 7,12-Dimethylbenz(a)anthracene (DMBA) and tumour development was monitored weekly. CCL2 protein was also quantified in paired samples of human breast tissue with high and low mammographic density. RESULTS: Overexpression of CCL2 in the mammary epithelium resulted in an increased number of macrophages, increased density of stroma and collagen and elevated mRNA encoding matrix remodelling enzymes lysyl oxidase (LOX) and tissue inhibitor of matrix metalloproteinases (TIMP)3 compared to non-transgenic controls. Transgenic mice also exhibited increased susceptibility to development of DMBA-induced mammary tumours. In a paired sample cohort of human breast tissue, abundance of epithelial-cell-associated CCL2 was higher in breast tissue of high mammographic density compared to tissue of low mammographic density. CONCLUSIONS: Constitutive expression of CCL2 by the mouse mammary epithelium induces a state of low level chronic inflammation that increases stromal density and elevates cancer risk. We propose that CCL2-driven inflammation contributes to the increased risk of breast cancer observed in women with high mammographic density.
Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Chemokine CCL2/metabolism , Disease Susceptibility , Inflammation/metabolism , Stromal Cells/metabolism , Animals , Breast Density , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Chemokine CCL2/genetics , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Epithelium/metabolism , Estrous Cycle , Female , Gene Expression , Humans , Inflammation/genetics , Inflammation/pathology , Kaplan-Meier Estimate , Macrophages/immunology , Macrophages/metabolism , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mammary Neoplasms, Experimental , Mice , Mice, Transgenic , Prognosis , RNA, Messenger/genetics , Stromal Cells/pathologyABSTRACT
Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.
Subject(s)
Intracellular Signaling Peptides and Proteins/physiology , MAP Kinase Signaling System , Mammary Neoplasms, Experimental/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Animals , Cell Polarity , Female , Homeostasis , Hyperplasia , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/pathology , Mice , MorphogenesisABSTRACT
BACKGROUND: High mammographic density (HMD) not only confers a significantly increased risk of breast cancer (BC) but also is associated with BCs of more advanced stages. However, it is unclear whether BC progression and metastasis are stimulated by HMD. We investigated whether patient-derived HMD breast tissue could stimulate the progression of MCF10DCIS.com cells compared with patient-matched low mammographic density (LMD) tissue. METHODS: Sterile breast specimens were obtained immediately after prophylactic mastectomy from high-risk women (n = 10). HMD and LMD regions of each specimen were resected under radiological guidance. Human MCF10DCIS.com cells, a model of ductal carcinoma in situ (DCIS), were implanted into silicone biochambers in the groins of severe combined immunodeficiency mice, either alone or with matched LMD or HMD tissue (1:1), and maintained for 6 weeks. We assessed biochamber weight as a measure of primary tumour growth, histological grade of the biochamber material, circulating tumour cells and metastatic burden by luciferase and histology. All statistical tests were two-sided. RESULTS: HMD breast tissue led to increased primary tumour take, increased biochamber weight and increased proportions of high-grade DCIS and grade 3 invasive BCs compared with LMD. This correlated with an increased metastatic burden in the mice co-implanted with HMD tissue. CONCLUSIONS: Our study is the first to explore the direct effect of HMD and LMD human breast tissue on the progression and dissemination of BC cells in vivo. The results suggest that HMD status should be a consideration in decision-making for management of patients with DCIS lesions.
Subject(s)
Breast Density , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Mammography , Adult , Animals , Biomarkers, Tumor , Breast Neoplasms/surgery , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Female , Heterografts , Humans , Mammography/methods , Mice , Middle Aged , Mutation , Neoplasm Invasiveness , Neoplasm Metastasis , Prophylactic Mastectomy , Risk FactorsABSTRACT
Women with high mammographic density (MD) are at increased risk of breast cancer (BC) after adjustment for age and body mass index. We have developed a murine biochamber model in which both high MD (HMD) and low MD (LMD) tissue can be propagated. Here, we tested whether cells isolated by collagenase digestion and fluorescence-activated cell sorting (FACS) from normal breast can be reconstituted in our biochamber model, which would allow cell-specific manipulations to be tested. Fresh breast tissue was collected from women (n = 7) undergoing prophylactic mastectomy. The tissue underwent collagenase digestion overnight and, in some cases, additional FACS enrichment to obtain mature epithelial, luminal progenitor, mammary stem, and stromal cells. Cells were then transferred bilaterally into biochambers in SCID mice (n = 5-7) and incubated for 6 weeks, before harvesting for histological analyses, and immunohistochemical staining for cytokeratins (CK), vimentin, Ki-67, murine macrophages, and Cleaved Caspase-3. Biochambers inoculated with single cells after collagenase digestion or with flow cytometry contained glandular structures of human origin (human vimentin-positive), which expressed CK-14 and pan-CK, and were proliferating (Ki-67-positive). Glandular structures from the digested tissues were smaller than those in chambers seeded with finely chopped intact mammary tissue. Mouse macrophage infiltration was higher in the chambers arising from digested tissues. Pooled single cells and FACS fractionated cells were viable in the murine biochambers and formed proliferating glandular organoids of human origin. This is among the first report to demonstrate the success of formed human glandular organoids from isolated primary mammary cells in the murine biochamber model.
Subject(s)
Breast/growth & development , Collagenases/metabolism , Organoids/growth & development , Tissue Engineering/methods , Adult , Animals , Breast/cytology , Breast/metabolism , Breast Density , Breast Neoplasms/pathology , Cell Proliferation/physiology , Collagenases/chemistry , Female , Flow Cytometry/methods , Humans , Mammary Glands, Human/cytology , Mammary Glands, Human/growth & development , Mice , Mice, SCID , Middle Aged , Organoids/cytology , Organoids/metabolism , Primary Cell CultureABSTRACT
Although increased mammographic density (MD) has been well established as a marker for increased breast cancer (BC) risk, its pathobiology is far from understood. Altered proteoglycan (PG) composition may underpin the physical properties of MD, and may contribute to the associated increase in BC risk. Numerous studies have investigated PGs, which are a major stromal matrix component, in relation to MD and BC and reported results that are sometimes discordant. Our review summarises these results and highlights discrepancies between PG associations with BC and MD, thus serving as a guide for identifying PGs that warrant further research towards developing chemo-preventive or therapeutic agents targeting preinvasive or invasive breast lesions, respectively.
Subject(s)
Breast Neoplasms/metabolism , Mammary Glands, Human/abnormalities , Proteoglycans/metabolism , Breast Density , Cell Membrane/metabolism , Cytoplasm/metabolism , Extracellular Matrix/metabolism , Female , Humans , Mammary Glands, Human/metabolism , Risk FactorsABSTRACT
INTRODUCTION: Mammographic density (MD), after adjustment for a women's age and body mass index, is a strong and independent risk factor for breast cancer (BC). Although the BC risk attributable to increased MD is significant in healthy women, the biological basis of high mammographic density (HMD) causation and how it raises BC risk remain elusive. We assessed the histological and immunohistochemical differences between matched HMD and low mammographic density (LMD) breast tissues from healthy women to define which cell features may mediate the increased MD and MD-associated BC risk. METHODS: Tissues were obtained between 2008 and 2013 from 41 women undergoing prophylactic mastectomy because of their high BC risk profile. Tissue slices resected from the mastectomy specimens were X-rayed, then HMD and LMD regions were dissected based on radiological appearance. The histological composition, aromatase immunoreactivity, hormone receptor status and proliferation status were assessed, as were collagen amount and orientation, epithelial subsets and immune cell status. RESULTS: HMD tissue had a significantly greater proportion of stroma, collagen and epithelium, as well as less fat, than LMD tissue did. Second harmonic generation imaging demonstrated more organised stromal collagen in HMD tissues than in LMD tissues. There was significantly more aromatase immunoreactivity in both the stromal and glandular regions of HMD tissues than in those regions of LMD tissues, although no significant differences in levels of oestrogen receptor, progesterone receptor or Ki-67 expression were detected. The number of macrophages within the epithelium or stroma did not change; however, HMD stroma exhibited less CD206(+) alternatively activated macrophages. Epithelial cell maturation was not altered in HMD samples, and no evidence of epithelial-mesenchymal transition was seen; however, there was a significant increase in vimentin(+)/CD45(+) immune cells within the epithelial layer in HMD tissues. CONCLUSIONS: We confirmed increased proportions of stroma and epithelium, increased aromatase activity and no changes in hormone receptor or Ki-67 marker status in HMD tissue. The HMD region showed increased collagen deposition and organisation as well as decreased alternatively activated macrophages in the stroma. The HMD epithelium may be a site for local inflammation, as we observed a significant increase in CD45(+)/vimentin(+) immune cells in this area.
Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast/metabolism , Collagen/metabolism , Epithelium/metabolism , Mammary Glands, Human/abnormalities , Stromal Cells/metabolism , Adult , Biomarkers, Tumor/metabolism , Breast/pathology , Breast Density , Breast Neoplasms/immunology , Epithelial-Mesenchymal Transition , Epithelium/pathology , Female , Humans , Immunohistochemistry , Immunophenotyping , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mammography , Middle Aged , Phenotype , Risk FactorsABSTRACT
The microenvironment of a tumor has emerged recently as a critical contributor to the development of cancer. Within this environment, fibroblasts and immune cells are the cell lineages that seem to be active mediators of tumour development. The activated fibroblasts that are also present during wound healing and chronic inflammation have been studied extensively. Their activation leads to altered gene expression profiles that markedly increase growth factor and cytokine secretion, leading to major alterations in the immune cell microenvironment. To better understand normal tissue development, wound healing and the chronic inflammation that leads to cancer, we review here information available on the role of fibroblasts and immune cells in normal breast development and in cancer. We also discuss the immunogenicity of breast cancer compared to other cancers and the contribution of the immune microenvironment to the initiation, progression and metastasis of tumors. Also reviewed is the limited knowledge on the role of immune cells and fibroblasts in normal development and whether the risk of cancer increases when their control is not tightly regulated.
Subject(s)
Cellular Microenvironment/immunology , Fibroblasts/pathology , Immune System/immunology , Mammary Glands, Animal/pathology , Mammary Glands, Human/pathology , Stromal Cells/pathology , Animals , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Fibroblasts/immunology , Humans , Immune System/pathology , Mammary Glands, Animal/immunology , Mammary Glands, Human/immunology , Mammary Neoplasms, Animal/immunology , Mammary Neoplasms, Animal/pathology , Stromal Cells/immunologyABSTRACT
Breast cancer (BCa) is the most common cancer in women and the estrogen receptor (ER)+ subtype is increasing in incidence. There are numerous therapy options available for patients that target the ER, however issues such as innate and acquired treatment resistance, and treatment related side effects justify research into alternative therapeutic options for these patients. Patients of many solid tumour types have benefitted from immunotherapy, however response rates have been generally low in ER+ BCa. We summarise the recent work assessing CDK4/6 inhibitors for ER+ BCa and how they have been shown to prime anti-tumour immune cells and achieve impressive results in preclinical models. A great example of how the immune system might be activated against ER+ BCa. We review the role of estrogen signalling in immune cells, and explore recent data highlighting the hormonal regulation of the immune microenvironment of normal breast, BCa and immune disorders. As recent data has indicated that macrophages are particularly susceptible to estrogen signalling, we highlight macrophage phagocytosis as a key potential target for priming the tumour immune microenvironment. We challenge the generally accepted paradigm that ER+ BCa are "immune-cold" - advocating instead for research into therapies that could be used in combination with targeted therapies and/or immune checkpoint blockade to achieve durable antitumour responses in ER+ BCa.
Subject(s)
Breast Neoplasms , Receptors, Estrogen , Tumor Microenvironment , Humans , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Tumor Microenvironment/immunology , Female , Receptors, Estrogen/metabolism , Signal Transduction , Animals , Macrophages/immunology , Macrophages/metabolism , Estrogens/metabolismABSTRACT
Male sex, early life chemical exposure and the brain aromatase enzyme have been implicated in autism spectrum disorder (ASD). In the Barwon Infant Study birth cohort (n = 1074), higher prenatal maternal bisphenol A (BPA) levels are associated with higher ASD symptoms at age 2 and diagnosis at age 9 only in males with low aromatase genetic pathway activity scores. Higher prenatal BPA levels are predictive of higher cord blood methylation across the CYP19A1 brain promoter I.f region (P = 0.009) and aromatase gene methylation mediates (P = 0.01) the link between higher prenatal BPA and brain-derived neurotrophic factor methylation, with independent cohort replication. BPA suppressed aromatase expression in vitro and in vivo. Male mice exposed to mid-gestation BPA or with aromatase knockout have ASD-like behaviors with structural and functional brain changes. 10-hydroxy-2-decenoic acid (10HDA), an estrogenic fatty acid alleviated these features and reversed detrimental neurodevelopmental gene expression. Here we demonstrate that prenatal BPA exposure is associated with impaired brain aromatase function and ASD-related behaviors and brain abnormalities in males that may be reversible through postnatal 10HDA intervention.
Subject(s)
Aromatase , Autism Spectrum Disorder , Benzhydryl Compounds , Brain , DNA Methylation , Mice, Knockout , Phenols , Prenatal Exposure Delayed Effects , Animals , Aromatase/metabolism , Aromatase/genetics , Male , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/chemically induced , Benzhydryl Compounds/toxicity , Female , Phenols/toxicity , Pregnancy , Brain/drug effects , Brain/metabolism , Mice , Humans , DNA Methylation/drug effects , Phenotype , Disease Models, Animal , Promoter Regions, Genetic , Child, PreschoolABSTRACT
Intratumoural heterogeneity is associated with poor outcomes in breast cancer. To understand how malignant clones survive and grow in metastatic niches, in vivo models using cell lines and patient-derived xenografts (PDX) have become the gold standard. Injections of cancer cells in orthotopic sites (spontaneous metastasis assays) or into the vasculature (experimental metastasis assays) have been used interchangeably to study the metastatic cascade from early events or post-intravasation, respectively. However, less is known about how these different routes of injection impact heterogeneity. Herein we directly compared the clonality of spontaneous and experimental metastatic assays using the human cell line MDA-MB-231 and a PDX model. Genetic barcoding was used to study the fitness of the subclones in primary and metastatic sites. Using spontaneous assays, we found that intraductal injections resulted in less diverse tumours compared to other routes of injections. Using experimental metastasis assays via tail vein injection of barcoded MDA-MB-231 cells, we also observed an asymmetry in metastatic heterogeneity between lung and liver that was not observed using spontaneous metastasis assays. These results demonstrate that these assays can result in divergent clonal outputs in terms of metastatic heterogeneity and provide a better understanding of the biases inherent to each technique.