Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000582

ABSTRACT

The impact of the HER4 receptor on the growth and treatment of estrogen receptor-positive breast cancer is widely uncertain. Using CRISPR/Cas9 technology, we generated stable HER4 knockout variants derived from the HER4-positive MCF-7, T-47D, and ZR-75-1 breast cancer cell lines. We investigated tumor cell proliferation as well as the cellular and molecular mechanisms of tamoxifen, abemaciclib, AMG232, and NRG1 treatments as a function of HER4 in vitro. HER4 differentially affects the cellular response to tamoxifen and abemaciclib treatment. Most conspicuous is the increased sensitivity of MCF-7 in vitro upon HER4 knockout and the inhibition of cell proliferation by NRG1. Additionally, we assessed tumor growth and immunological effects as responses to tamoxifen and abemaciclib therapy in humanized tumor mice (HTM) based on MCF-7 HER4-wildtype and the corresponding HER4-knockout cells. Without any treatment, the enhanced MCF-7 tumor growth in HTM upon HER4 knockout suggests a tumor-suppressive effect of HER4 under preclinical but human-like conditions. This phenomenon is associated with an increased HER2 expression in MCF-7 in vivo. Independent of HER4, abemaciclib and tamoxifen treatment considerably inhibited tumor growth in these mice. However, abemaciclib-treated hormone receptor-positive breast cancer patients with tumor-associated mdm2 gene copy gains or pronounced HER4 expression showed a reduced event-free survival. Evidently, the presence of HER4 affects the efficacy of tamoxifen and abemaciclib treatment in different estrogen receptor-positive breast cancer cells, even to different extents, and is associated with unfavorable outcomes in abemaciclib-treated patients.


Subject(s)
Aminopyridines , Benzimidazoles , Breast Neoplasms , Cell Proliferation , Receptor, ErbB-4 , Tamoxifen , Animals , Humans , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Cell Proliferation/drug effects , MCF-7 Cells , Receptor, ErbB-4/metabolism , Receptor, ErbB-4/genetics , Xenograft Model Antitumor Assays , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics
2.
Front Immunol ; 15: 1355130, 2024.
Article in English | MEDLINE | ID: mdl-38742103

ABSTRACT

Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.


Subject(s)
B7-H1 Antigen , Immune Checkpoint Inhibitors , Neoadjuvant Therapy , Receptor, ErbB-2 , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Disease Models, Animal , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Neoadjuvant Therapy/methods , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/therapy , Xenograft Model Antitumor Assays
3.
Mol Oncol ; 18(2): 431-452, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103190

ABSTRACT

The programmed cell death 1 ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) axis is primarily associated with immunosuppression in cytotoxic T lymphocytes (CTLs). However, mounting evidence is supporting the thesis that PD-L1 not only functions as a ligand but mediates additional cellular functions in tumor cells. Moreover, it has been demonstrated that PD-L1 is not exclusively localized at the cellular membrane. Subcellular fractionation revealed the presence of PD-L1 in various cellular compartments of six well-characterized head and neck cancer (HNC) cell lines, including the nucleus. Via Western blotting, we detected PD-L1 in its well-known glycosylated/deglycosylated state at 40-55 kDa. In addition, we detected previously unknown PD-L1 variants with a molecular weight at approximately 70 and > 150 kDa exclusively in nuclear protein fractions. These in vitro findings were confirmed with primary tumor samples from head and neck squamous cell carcinoma (HNSCC) patients. Furthermore, we demonstrated that nuclear PD-L1 variant expression is cell-cycle-dependent. Immunofluorescence staining of PD-L1 in different cell cycle phases of synchronized HNC cells supported these observations. Mechanisms of nuclear PD-L1 trafficking remain less understood; however, proximity ligation assays showed a cell-cycle-dependent interaction of the cytoskeletal protein vimentin with PD-L1, whereas vimentin could serve as a potential shuttle for nuclear PD-L1 transportation. Mass spectrometry after PD-L1 co-immunoprecipitation, followed by gene ontology analysis, indicated interaction of nuclear PD-L1 with proteins involved in DNA remodeling and messenger RNA (mRNA) splicing. Our results in HNC cells suggest a highly complex regulation of PD-L1 and multiple tumor cell-intrinsic functions, independent of immune regulation. These observations bear significant implications for the therapeutic efficacy of immune checkpoint inhibition.


Subject(s)
B7-H1 Antigen , Head and Neck Neoplasms , Humans , B7-H1 Antigen/metabolism , Cell Cycle , Head and Neck Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Vimentin
SELECTION OF CITATIONS
SEARCH DETAIL