Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Prostate ; 83(7): 663-669, 2023 05.
Article in English | MEDLINE | ID: mdl-36842100

ABSTRACT

BACKGROUND: New evidence suggests that bacteria-produced DNA toxins may have a role in the development or progression of prostate cancer. To determine the prevalence of these genes in a noninfection (i.e., colonized) state, we screened urine specimens in men before undergoing a biopsy for prostate cancer detection. METHODS: We developed a multiplex polymerase chain reaction using three of the most described bacterial genotoxin gene primers: Colibactin (polyketone synthase [pks] gene island: clbN and clbB), cytotoxic necrotizing factor (cnf1) toxin, and cytolethal distending toxin B (cdtB) represented gene islands. After calibration on Escherichia coli samples of known genotypes, we used a training and validation cohort. We performed multiplex testing on a training cohort of previously collected urine from 45 men undergoing prostate biopsy. For the validation cohort, we utilized baseline urine samples from a previous randomized clinical trial (n = 263) with known prostate cancer outcomes. RESULTS: The prevalence of four common bacterial genotoxin genes detected in the urine before prostate biopsy for prostate cancer is 8% (25/311). The prevalence of pks island (clbN and clbB), cnf1, and cdt toxin genes are 6.1%, 2.4%, and 1.7%, respectively. We found no association between urinary genotoxins and prostate cancer (p = 0.83). We did identify a higher proportion of low-grade cancer (92% vs. 44%) in those men positive for urinary genotoxin and higher-grade cancer in those genotoxin negative (8% vs. 56%, p = 0.001). CONCLUSIONS: The prevalence of urinary genotoxins is low and does not correspond to a prostate cancer diagnosis. The urine was taken at one point in time and does not rule out the possibility of previous exposure.


Subject(s)
Escherichia coli , Prostatic Neoplasms , Male , Humans , Prevalence , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Biopsy , DNA Damage , Mutagens
2.
J Fungi (Basel) ; 8(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35736079

ABSTRACT

The use of broad-spectrum antimycotic therapy, immunosuppressive therapy, and indwelling medical devices has contributed to the increased frequency of mucosal and systemic infections caused by Candida glabrata. A major concern for C. glabrata and other Candida spp. infections is the increase in drug resistance. To address these issues, additional molecular tools for the study of C. glabrata are needed. In this investigation, we developed an Agrobacterium tumefaciens transformation system for C. glabrata. A number of parameters were investigated to determine their effect on transformation frequency, and then an optimized protocol was developed. The optimal conditions for the transformation of C. glabrata were found to be an infection incubation temperature of 26 °C, 0.2 mM acetosyringone in both induction media and co-culture media, 0.7% agar concentration, and a multiplicity of infection of 50:1 A. tumefaciens to C. glabrata. Importantly, the frequency of multiple integrations was low (5%), demonstrating that A. tumefaciens generally integrates at single sites in C. glabrata, which is consistent with other fungal A. tumefaciens transformation systems. The development of this system in C. glabrata adds another tool for the molecular manipulation of this increasingly important fungal pathogen.

3.
J Fungi (Basel) ; 7(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209781

ABSTRACT

The transformation of Cryptococcus spp. by Agrobacterium tumefaciens has proven to be a useful genetic tool. A number of factors affect transformation frequency. These factors include acetosyringone concentration, bacterial cell to yeast cell ratio, cell wall damage, and agar concentration. Agar concentration was found to have a significant effect on the transformant number as transformants increased with agar concentration across all four serotypes. When infection time points were tested, higher agar concentrations were found to result in an earlier transfer of the Ti-plasmid to the yeast cell, with the earliest transformant appearing two h after A. tumefaciens contact with yeast cells. These results demonstrate that A. tumefaciens transformation efficiency can be affected by a variety of factors and continued investigation of these factors can lead to improvements in specific A. tumefaciens/fungus transformation systems.

SELECTION OF CITATIONS
SEARCH DETAIL