Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(12): 1538-1550, 2021 12.
Article in English | MEDLINE | ID: mdl-34795444

ABSTRACT

The signals driving the adaptation of type 2 dendritic cells (DC2s) to diverse peripheral environments remain mostly undefined. We show that differentiation of CD11blo migratory DC2s-a DC2 population unique to the dermis-required IL-13 signaling dependent on the transcription factors STAT6 and KLF4, whereas DC2s in lung and small intestine were STAT6-independent. Similarly, human DC2s in skin expressed an IL-4 and IL-13 gene signature that was not found in blood, spleen and lung DCs. In mice, IL-13 was secreted homeostatically by dermal innate lymphoid cells and was independent of microbiota, TSLP or IL-33. In the absence of IL-13 signaling, dermal DC2s were stable in number but remained CD11bhi and showed defective activation in response to allergens, with diminished ability to support the development of IL-4+GATA3+ helper T cells (TH), whereas antifungal IL-17+RORγt+ TH cells were increased. Therefore, homeostatic IL-13 fosters a noninflammatory skin environment that supports allergic sensitization.


Subject(s)
Cell Communication , Cell Differentiation , Interleukin-13/metabolism , Langerhans Cells/metabolism , Skin/metabolism , Th17 Cells/metabolism , Th2 Cells/metabolism , Allergens/pharmacology , Animals , CD11b Antigen/genetics , CD11b Antigen/metabolism , Cells, Cultured , Databases, Genetic , Humans , Interleukin-13/genetics , Langerhans Cells/drug effects , Langerhans Cells/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phenotype , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Signal Transduction , Skin/cytology , Skin/drug effects , Skin/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Transcriptome
2.
Cell ; 171(1): 217-228.e13, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28890086

ABSTRACT

Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.


Subject(s)
Pruritus/immunology , Sensory Receptor Cells/immunology , Sensory Receptor Cells/metabolism , Signal Transduction , Skin Diseases/immunology , Animals , Ganglia, Spinal , Humans , Interleukin-13/immunology , Interleukin-4/immunology , Janus Kinase 1/metabolism , Mice , Mice, Inbred C57BL , Pruritus/metabolism , Skin Diseases/pathology
4.
Immunity ; 50(5): 1262-1275.e4, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31027995

ABSTRACT

Mast cell (MC) mediator release after crosslinking of surface-bound IgE antibody by ingested antigen underlies food allergy. However, IgE antibodies are not uniformly associated with food allergy, and intestinal MC load is an important determinant. Atopic dermatitis (AD), characterized by pruritis and cutaneous sensitization to allergens, including foods, is strongly associated with food allergy. Tape stripping mouse skin, a surrogate for scratching, caused expansion and activation of small intestinal MCs, increased intestinal permeability, and promoted food anaphylaxis in sensitized mice. Tape stripping caused keratinocytes to systemically release interleukin-33 (IL-33), which synergized with intestinal tuft-cell-derived IL-25 to drive the expansion and activation of intestinal type-2 innate lymphoid cells (ILC2s). These provided IL-4, which targeted MCs to expand in the intestine. Duodenal MCs were expanded in AD. In addition to promoting cutaneous sensitization to foods, scratching may promote food anaphylaxis in AD by expanding and activating intestinal MCs.


Subject(s)
Dermatitis, Atopic/immunology , Food Hypersensitivity/immunology , Intestinal Mucosa/immunology , Lymphocytes/immunology , Mast Cells/immunology , Adolescent , Anaphylaxis/immunology , Animals , Cell Proliferation , Child , Child, Preschool , Female , Humans , Immunoglobulin E/immunology , Interleukin-13/metabolism , Interleukin-33/metabolism , Interleukin-4/metabolism , Interleukins/metabolism , Intestinal Mucosa/cytology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Signal Transduction/immunology , Skin/immunology , Skin/injuries
5.
Trends Immunol ; 43(8): 657-673, 2022 08.
Article in English | MEDLINE | ID: mdl-35835714

ABSTRACT

Schistosomiasis is the second most debilitating neglected tropical disease globally after malaria, with no available therapy to control disease-driven immunopathology. Although schistosomiasis induces a markedly heterogenous immune response, type 2 immunity is the dominating immune response following oviposition. While type 2 immunity has a crucial role in granuloma formation and host survival during the acute stage of disease, its chronic activation can result in tissue scarring, fibrosis, and organ impairment. Here, we discuss recent advances in schistosomiasis, demonstrating how different immune and non-immune cells and signaling pathways are involved in the induction, maintenance, and regulation of type 2 immunity. A better understanding of these immune responses during schistosomiasis is essential to inform the potential development of candidate therapeutic strategies that fine-tune type 2 immunity to ideally modulate schistosomiasis immunopathology.


Subject(s)
Schistosomiasis , Female , Fibrosis , Humans , Schistosomiasis/metabolism , Schistosomiasis/pathology
6.
Article in English | MEDLINE | ID: mdl-38996877

ABSTRACT

BACKGROUND: Atopic dermatitis is characterized by scratching and a Th2-dominated local and systemic response to cutaneously encountered antigens. Dendritic cells (DCs) capture antigens in the skin and rapidly migrate to draining lymph nodes (dLNs) where they drive the differentiation of antigen-specific naïve T cells. OBJECTIVE: Determine whether non-T cell-derived IL-4 acts on skin-derived DCs to promote the Th2 response to cutaneously encountered antigen and allergic skin inflammation. METHODS: DCs from dLNs of ovalbumin (OVA)-exposed skin were analyzed by flow cytometry and for their ability to polarize OVA-specific naïve CD4+ T cells. Skin inflammation following epicutaneous (EC) sensitization of tape-stripped skin was assessed by flow cytometry of skin cells and qRT-PCR of cytokines. Cytokine secretion and antibody levels were evaluated by ELISA. RESULTS: Scratching upregulated IL4 expression in human skin. Similarly, tape stripping caused rapid basophil-dependent upregulation of cutaneous Il4 expression in mouse skin. In vitro treatment of DCs from skin dLNs with IL-4 promoted their capacity to drive Th2 differentiation. DCs from dLNs of OVA-sensitized skin of Il4-/- mice and CD11cCreIl4rflox/- mice that lack IL-4Rα expression in DCs (DCΔ/Δll4ra mice) were impaired in their capacity to drive Th2 polarization compared to DCs from controls. Importantly, OVA sensitized DCΔ/Δll4ra mice demonstrated impaired allergic skin inflammation and OVA-specific systemic Th2 response evidenced by reduced Th2 cytokine secretion by OVA-stimulated splenocytes and lower levels of OVA-specific IgE and IgG1 antibodies, compared to controls. CONCLUSION: Mechanical skin injury causes basophil-dependent upregulation of cutaneous IL-4. IL-4 acts on skin DCs that capture antigen and migrate to dLNs to promote their capacity for Th2 polarization and drive allergic skin inflammation.

7.
Gut ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724220

ABSTRACT

OBJECTIVE: Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN: Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT: We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION: Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.

8.
PLoS Pathog ; 18(2): e1010327, 2022 02.
Article in English | MEDLINE | ID: mdl-35157732

ABSTRACT

Schistosomiasis is a potentially lethal parasitic disease that profoundly impacts systemic immune function in chronically infected hosts through mechanisms that remain unknown. Given the immunoregulatory dysregulation experienced in infected individuals, this study examined the impact of chronic schistosomiasis on the sustainability of vaccine-induced immunity in both children living in endemic areas and experimental infections in mice. Data show that chronic Schistosoma mansoni infection impaired the persistence of vaccine specific antibody responses in poliovirus-vaccinated humans and mice. Mechanistically, schistosomiasis primarily fostered plasmablast and plasma cell death in the bone marrow and removal of parasites following praziquantel treatment reversed the observed cell death and partially restored vaccine-induced memory responses associated with increased serum anti-polio antibody responses. Our findings strongly suggest a previously unrecognized mechanism to explain how chronic schistosomiasis interferes with an otherwise effective vaccine regimen and further advocates for therapeutic intervention strategies that reduce schistosomiasis burden in endemic areas prior to vaccination.


Subject(s)
Schistosomiasis mansoni , Schistosomiasis , Vaccines , Animals , Bone Marrow , Cell Death , Mice , Plasma Cells , Schistosoma mansoni , Vaccines/therapeutic use
9.
Int Immunol ; 35(9): 423-435, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37279329

ABSTRACT

Atopic dermatitis (AD) is a common chronic skin disease caused by immune dysfunction, specifically the hyperactivation of Th2 immunity. AD is a complex disease with multiple factors contributing to its development; however, the interaction between these factors is not fully understood. In this study, we demonstrated that the conditional deletion of both the forkhead box p3 (Foxp3) and B-cell lymphoma 6 (Bcl6) genes induced the spontaneous development of AD-like skin inflammation with hyperactivation of type 2 immunity, skin barrier dysfunction, and pruritus, which were not induced by the single deletion of each gene. Furthermore, the development of AD-like skin inflammation was largely dependent on IL-4/13 signaling but not on immunoglobulin E (IgE). Interestingly, we found that the loss of Bcl6 alone increased the expression of thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33 in the skin, suggesting that Bcl6 controls Th2 responses by suppressing TSLP and IL-33 expression in epithelial cells. Our results suggest that Foxp3 and Bcl6 cooperatively suppress the pathogenesis of AD. Furthermore, these results revealed an unexpected role of Bcl6 in suppressing Th2 responses in the skin.


Subject(s)
Dermatitis, Atopic , Humans , Cytokines/metabolism , Skin , Pruritus , Thymic Stromal Lymphopoietin , Inflammation/metabolism
10.
Arterioscler Thromb Vasc Biol ; 43(6): 943-957, 2023 06.
Article in English | MEDLINE | ID: mdl-37021574

ABSTRACT

BACKGROUND: Inflammation is a key driver of cardiovascular pathology, and many systemic autoimmune/rheumatic diseases are accompanied by increased cardiac risk. In the K/B.g7 mouse model of coexisting systemic autoantibody-mediated arthritis and valvular carditis, valve inflammation depends on macrophage production of TNF (tumor necrosis factor) and IL-6 (interleukin-6). Here, we sought to determine if other canonical inflammatory pathways participate and to determine whether TNF signaling through TNFR1 (tumor necrosis factor receptor 1) on endothelial cells is required for valvular carditis. METHODS: We first asked if type 1, 2, or 3 inflammatory cytokine systems (typified by IFNγ, IL-4, and IL-17, respectively) were critical for valvular carditis in K/B.g7 mice, using a combination of in vivo monoclonal antibody blockade and targeted genetic ablation studies. To define the key cellular targets of TNF, we conditionally deleted its main proinflammatory receptor, TNFR1, in endothelial cells. We analyzed how the absence of endothelial cell TNFR1 affected valve inflammation, lymphangiogenesis, and the expression of proinflammatory genes and molecules. RESULTS: We found that typical type 1, 2, and 3 inflammatory cytokine systems were not required for valvular carditis, apart from a known initial requirement of IL-4 for autoantibody production. Despite expression of TNFR1 on a wide variety of cell types in the cardiac valve, deleting TNFR1 specifically on endothelial cells protected K/B.g7 mice from valvular carditis. This protection was accompanied by reduced expression of VCAM-1 (vascular cell adhesion molecule), fewer valve-infiltrating macrophages, reduced pathogenic lymphangiogenesis, and diminished proinflammatory gene expression. CONCLUSIONS: TNF and IL-6 are the main cytokines driving valvular carditis in K/B.g7 mice. The interaction of TNF with TNFR1 specifically on endothelial cells promotes cardiovascular pathology in the setting of systemic autoimmune/rheumatic disease, suggesting that therapeutic targeting of the TNF:TNFR1 interaction could be beneficial in this clinical context.


Subject(s)
Heart Valve Diseases , Receptors, Tumor Necrosis Factor, Type I , Animals , Mice , Autoantibodies , Cytokines , Endothelial Cells/metabolism , Inflammation , Interleukin-4 , Interleukin-6/genetics , Myocarditis/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1/metabolism
11.
Genome Res ; 30(7): 1060-1072, 2020 07.
Article in English | MEDLINE | ID: mdl-32718982

ABSTRACT

Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.


Subject(s)
RNA, Long Noncoding/physiology , Cell Growth Processes/genetics , Cell Movement/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , KCNQ Potassium Channels/metabolism , Molecular Sequence Annotation , Oligonucleotides, Antisense , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , RNA, Small Interfering
12.
FASEB J ; 36(10): e22532, 2022 10.
Article in English | MEDLINE | ID: mdl-36063138

ABSTRACT

Interleukin-4 (IL-4) and its receptors (IL-4R) promote the proliferation and polarization of macrophages. However, it is unknown if IL-4R also influences monocyte homeostasis and if steady state IL-4 levels are sufficient to affect monocytes. Employing full IL-4 receptor alpha knockout mice (IL-4Rα-/- ) and mice with a myeloid-specific deletion of IL-4Rα (IL-4Rαf/f LysMcre ), we show that IL-4 acts as a homeostatic factor regulating circulating monocyte numbers. In the absence of IL-4Rα, murine monocytes in blood were reduced by 50% without altering monocytopoiesis in the bone marrow. This reduction was accompanied by a decrease in monocyte-derived inflammatory cytokines in the plasma. RNA sequencing analysis and immunohistochemical staining of splenic monocytes revealed changes in mRNA and protein levels of anti-apoptotic factors including BIRC6 in IL-4Rα-/- knockout animals. Furthermore, assessment of monocyte lifespan in vivo measuring BrdU+ cells revealed that the lifespan of circulating monocytes was reduced by 55% in IL-4Rα-/- mice, whereas subcutaneously applied IL-4 prolonged it by 75%. Treatment of human monocytes with IL-4 reduced the amount of dying monocytes in vitro. Furthermore, IL-4 stimulation reduced the phosphorylation of proteins involved in the apoptosis pathway, including the phosphorylation of the NFκBp65 protein. In a cohort of human patients, serum IL-4 levels were significantly associated with monocyte counts. In a sterile peritonitis model, reduced monocyte counts resulted in an attenuated recruitment of monocytes upon inflammatory stimulation in IL-4Rαf/f LysMcre mice without changes in overall migratory function. Thus, we identified a homeostatic role of IL-4Rα in regulating the lifespan of monocytes in vivo.


Subject(s)
Interleukin-4/metabolism , Monocytes , Receptors, Cell Surface/metabolism , Signal Transduction , Animals , Homeostasis , Humans , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Monocytes/metabolism
13.
J Biol Chem ; 296: 100615, 2021.
Article in English | MEDLINE | ID: mdl-33798555

ABSTRACT

Persistent high levels of proinflammatory and Th1 responses contribute to cerebral malaria (CM). Suppression of inflammatory responses and promotion of Th2 responses prevent pathogenesis. IL-4 commonly promotes Th2 responses and inhibits inflammatory and Th1 responses. Therefore, IL-4 is widely considered as a beneficial cytokine via its Th2-promoting role that is predicted to provide protection against severe malaria by inhibiting inflammatory responses. However, IL-4 may also induce inflammatory responses, as the result of IL-4 action depends on the timing and levels of its production and the tissue environment in which it is produced. Recently, we showed that dendritic cells (DCs) produce IL-4 early during malaria infection in response to a parasite protein and that this IL-4 response may contribute to severe malaria. However, the mechanism by which IL-4 produced by DCs contributing to lethal malaria is unknown. Using Plasmodium berghei ANKA-infected C57BL/6 mice, a CM model, we show here that mice lacking IL-4Rα only in CD8α+ DCs are protected against CM pathogenesis and survive, whereas WT mice develop CM and die. Compared with WT mice, mice lacking IL-4Rα in CD11c+ or CD8α+ DCs showed reduced inflammatory responses leading to decreased Th1 and cytotoxic CD8+ T cell responses, lower infiltration of CD8+ T cells to the brain, and negligible brain pathology. The novel results presented here reveal a paradoxical role of IL-4Rα signaling in CM pathogenesis that promotes CD8α+ DC-mediated inflammatory responses that generate damaging Th1 and cytotoxic CD8+ T cell responses.


Subject(s)
CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Malaria, Cerebral/immunology , Plasmodium berghei/immunology , Receptors, Cell Surface/immunology , Signal Transduction/immunology , Th1 Cells/immunology , Animals , CD8 Antigens/genetics , CD8-Positive T-Lymphocytes/pathology , Dendritic Cells/pathology , Interleukin-4/genetics , Interleukin-4/immunology , Malaria, Cerebral/genetics , Malaria, Cerebral/pathology , Mice , Mice, Knockout , Plasmodium berghei/genetics , Receptors, Cell Surface/genetics , Signal Transduction/genetics , Th1 Cells/pathology , Th2 Cells/immunology , Th2 Cells/pathology
14.
J Antimicrob Chemother ; 77(4): 1061-1071, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35084027

ABSTRACT

BACKGROUND: Previously, we evaluated the intracellular mycobactericidal activity of the minor groove binder, S-MGB-364 against the clinical Mycobacterium tuberculosis (Mtb) strain HN878 in macrophages. OBJECTIVES: To assess the mycobactericidal activity of S-MGB-364 in Mtb-infected mice. Further, we investigated a plausible DNA binding mechanism of action of S-MGB-364. METHODS: The anti-TB and host immune effects of intranasal S-MGB-364 or S-MGB-364 encapsulated in non-ionic surfactant vesicles (NIV) were assessed in Mtb-infected mice by cfu enumeration, ELISA, histology, and flow cytometry. DNA binding was examined using native mass spectrometry and UV-vis thermal melt determination. S-MGB interference with DNA-centric biological events was assessed using a representative panel of Mtb and human topoisomerase I, and gyrase assays. RESULTS: S-MGB-364 bound strongly to DNA as a dimer, significantly increasing the stability of the DNA:S-MGB complex compared with DNA alone. Moreover, S-MGB-364 inhibited the relaxation of Mtb topoisomerase I but not the human form. In macrophages, S-MGB-364 or S-MGB-364-NIV did not cause DNA damage as shown by the low γ-H2AX expression. Importantly, in the lungs, the intranasal administration of S-MGB-364 or S-MGB-364-NIV formulation in Mtb-infected mice was non-toxic and resulted in a ∼1 log cfu reduction in mycobacterial burden, reduced the expression of proinflammatory cytokines/chemokines, altered immune cell recruitment, and importantly reduced recruitment of neutrophils. CONCLUSIONS: Together, these data provide proof of concept for S-MGBs as novel anti-TB therapeutics in vivo.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Immunity , Macrophages/microbiology , Mice , Tuberculosis/drug therapy , Tuberculosis/microbiology
15.
Metabolomics ; 18(11): 92, 2022 11 13.
Article in English | MEDLINE | ID: mdl-36371785

ABSTRACT

INTRODUCTION: PKCδ is ubiquitously expressed in mammalian cells and its dysregulation plays a key role in the onset of several incurable diseases and metabolic disorders. However, much remains unknown about the metabolic pathways and disturbances induced by PKC deficiency, as well as the metabolic mechanisms involved. OBJECTIVES: This study aims to use metabolomics to further characterize the function of PKC from a metabolomics standpoint, by comparing the full serum metabolic profiles of PKC deficient mice to those of wild-type mice. METHODS: The serum metabolomes of PKCδ knock-out mice were compared to that of a wild-type strain using a GCxGC-TOFMS metabolomics research approach and various univariate and multivariate statistical analyses. RESULTS: Thirty-seven serum metabolite markers best describing the difference between PKCδ knock-out and wild-type mice were identified based on a PCA power value > 0.9, a t-test p-value < 0.05, or an effect size > 1. XERp prediction was also done to accurately select the metabolite markers within the 2 sample groups. Of the metabolite markers identified, 78.4% (29/37) were elevated and 48.65% of these markers were fatty acids (18/37). It is clear that a total loss of PKCδ functionality results in an inhibition of glycolysis, the TCA cycle, and steroid synthesis, accompanied by upregulation of the pentose phosphate pathway, fatty acids oxidation, cholesterol transport/storage, single carbon and sulphur-containing amino acid synthesis, branched-chain amino acids (BCAA), ketogenesis, and an increased cell signalling via N-acetylglucosamine. CONCLUSION: The charaterization of the dysregulated serum metabolites in this study, may represent an additional tool for the early detection and screening of PKCδ-deficiencies or abnormalities.


Subject(s)
Metabolomics , Protein Kinase C-delta , Mice , Animals , Metabolomics/methods , Protein Kinase C-delta/genetics , Mice, Knockout , Metabolome , Biomarkers , Fatty Acids , Mammals
16.
Br J Nutr ; 127(3): 384-397, 2022 02 14.
Article in English | MEDLINE | ID: mdl-33814018

ABSTRACT

Non-resolving inflammation is characteristic of tuberculosis (TB). Given their inflammation-resolving properties, n-3 long-chain PUFA (n-3 LCPUFA) may support TB treatment. This research aimed to investigate the effects of n-3 LCPUFA on clinical and inflammatory outcomes of Mycobacterium tuberculosis-infected C3HeB/FeJ mice with either normal or low n-3 PUFA status before infection. Using a two-by-two design, uninfected mice were conditioned on either an n-3 PUFA-sufficient (n-3FAS) or -deficient (n-3FAD) diet for 6 weeks. One week post-infection, mice were randomised to either n-3 LCPUFA supplemented (n-3FAS/n-3+ and n-3FAD/n-3+) or continued on n-3FAS or n-3FAD diets for 3 weeks. Mice were euthanised and fatty acid status, lung bacterial load and pathology, cytokine, lipid mediator and immune cell phenotype analysed. n-3 LCPUFA supplementation in n-3FAS mice lowered lung bacterial loads (P = 0·003), T cells (P = 0·019), CD4+ T cells (P = 0·014) and interferon (IFN)-γ (P < 0·001) and promoted a pro-resolving lung lipid mediator profile. Compared with n-3FAS mice, the n-3FAD group had lower bacterial loads (P = 0·037), significantly higher immune cell recruitment and a more pro-inflammatory lipid mediator profile, however, significantly lower lung IFN-γ, IL-1α, IL-1ß and IL-17, and supplementation in the n-3FAD group provided no beneficial effect on lung bacterial load or inflammation. Our study provides the first evidence that n-3 LCPUFA supplementation has antibacterial and inflammation-resolving benefits in TB when provided 1 week after infection in the context of a sufficient n-3 PUFA status, whilst a low n-3 PUFA status may promote better bacterial control and lower lung inflammation not benefiting from n-3 LCPUFA supplementation.


Subject(s)
Fatty Acids, Omega-3 , Mycobacterium tuberculosis , Tuberculosis , Animals , Anti-Bacterial Agents/therapeutic use , Eicosanoids , Fatty Acids/therapeutic use , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Unsaturated , Inflammation/drug therapy , Inflammation/microbiology , Mice , Tuberculosis/drug therapy
17.
J Allergy Clin Immunol ; 148(1): 99-109.e5, 2021 07.
Article in English | MEDLINE | ID: mdl-33383090

ABSTRACT

BACKGROUND: B cells play an important role in allergies through secretion of IgE. IL-4 receptor α (IL-4Rα) is key in allergic asthma and regulates type 2 cytokine production, IgE secretion, and airway hyperresponsiveness. IL-4 activation of B cells is essential for class switching and contributes to the induction of B effector 2 (Be2) cells. The role of Be2 cells and signaling via IL-4Rα in B cells is not clearly defined. OBJECTIVE: We sought to find out whether IL-4Rα-responsive B cells or Be2 function was essential in experimental allergic asthma. METHODS: Mice lacking IL-4Rα on B cells (mb1creIL-4Rα-/lox) or littermate controls (IL-4Rα-/lox) and mice lacking IL-4 or IL-4/IL-13 on B cells were sensitized and challenged with high-dose house dust mite (>10 µg) or with low-dose house dust mite (<3 µg). We also adoptively transferred naive IL-4Rα-/lox or IL-4Rα-/- B cells into µMT-/- mice a day before sensitization or a day before challenge. We analyzed lung inflammation, cellular infiltrate, and airway hyperresponsiveness. RESULTS: We found that IL-4Rα signaling on B cells was important for optimal TH2 allergic immune responses mainly when the load of antigen is limited. IL-4Rα signaling on B cells was essential for germinal centers and in the effector phase of allergic responses. Be2 cells were essential in airway hyperresponsiveness, but not in other parameters. CONCLUSIONS: IL-4Rα signaling on B cells is deleterious in allergic asthma because it is required for optimal TH2 responses, Be2 function, germinal center formation, and T follicular helper cells, especially when the load of the antigen is limiting.


Subject(s)
Antigens/immunology , B-Lymphocytes/immunology , Hypersensitivity/immunology , Interleukin-4 Receptor alpha Subunit/immunology , Respiratory Hypersensitivity/immunology , Signal Transduction/immunology , Allergens/immunology , Animals , Asthma/immunology , Interleukin-13/immunology , Lung/immunology , Mice , Mice, Inbred BALB C , Pneumonia/immunology , Pyroglyphidae/immunology , Th2 Cells/immunology
18.
Molecules ; 27(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36432169

ABSTRACT

Host inflammatory responses are key to protection against injury; however, persistent inflammation is detrimental and contributes to morbidity and mortality. Herein, we demonstrated the anti-inflammatory role of Arteannuin-B (1) and its new spirocyclic-2-isoxazoline derivative JR-9 and their side effects in acute inflammatory condition in vivo using LPS-induced cytokines assay, carrageenan-induced paw edema, acetic acid-induced writhing and tail immersion. The results show that the spirocyclic-2-isoxazoline derivative is a potent anti-inflammatory agent with minimal cell toxicity as compared to Arteannuin-B. In addition, the efficacies of these compounds were also validated by flow cytometric, computational, and histopathological analysis. Our results show that the anti-inflammatory response of JR-9 significantly reduces the ability of mouse macrophages to produce NO, TNF-α, and IL-6 following LPS stimulation. Therefore, JR-9 is a prospective candidate for the development of anti-inflammatory drugs and its molecular mechanism is likely related to the regulation of NF-κB and MAPK signaling pathway.


Subject(s)
Lipopolysaccharides , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Down-Regulation , Mice, Inbred BALB C , Macrophages , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
19.
J Infect Dis ; 224(12): 2170-2180, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34739044

ABSTRACT

BACKGROUND: Interleukin 4 (IL-4i1)-induced gene 1 encodes L-phenylalanine oxidase that catabolizes phenylalanine into phenylpyruvate. IL-4i1 is mainly expressed by antigen-presenting cells (APCs), inhibits T-cell proliferation, regulates B-cell activation, modulates T cell responses, and drives macrophage polarization, but its role in bacterial infections is understudied. METHODS: We evaluated IL-4i1 deletion in macrophages and mice on infection with virulent H37Rv and W-Beijing lineage hypervirulent HN878 Mycobacterium tuberculosis (Mtb) strains. The bacterial growth and proinflammatory responses were measured in vitro and in vivo. Histopathological analysis, lung immune cell recruitment, and macrophage activation were assessed at the early and chronic stages of Mtb infection. RESULTS: IL-4i1-deficient (IL-4i1-/-) mice displayed increased protection against acute H37Rv, HN878 and chronic HN878 Mt infections, with reduced lung bacterial burdens and altered APC responses compared with wild-type mice. Moreover, "M1-like" interstitial macrophage numbers, and nitrite and Interferon-γ production were significantly increased in IL-4i1-/- mice compared with wild-type mice during acute Mtb HN878 infection. CONCLUSIONS: Together, these data suggest that IL-4i1 regulates APC-mediated inflammatory responses during acute and chronic Mtb infection. Hence, IL-4i1 targeting has potential as an immunomodulatory target for host-directed therapy.


Subject(s)
Immunity , Macrophages/microbiology , Mycobacterium tuberculosis/immunology , Tuberculosis , Animals , Macrophage Activation , Macrophages/drug effects , Macrophages/immunology , Mice , T-Lymphocytes , Tuberculosis/diagnosis
20.
Am J Physiol Heart Circ Physiol ; 320(1): H323-H337, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33164548

ABSTRACT

Interleukin-4 receptor α (IL4Rα) signaling plays an important role in cardiac remodeling during myocardial infarction (MI). However, the target cell type(s) of IL4Rα signaling during this remodeling remains unclear. Here, we investigated the contribution of endogenous myeloid-specific IL4Rα signaling in cardiac remodeling post-MI. We established a murine myeloid-specific IL4Rα knockout (MyIL4RαKO) model with LysM promoter-driven Cre recombination. Macrophages from MyIL4RαKO mice showed significant downregulation of alternatively activated macrophage markers but an upregulation of classical activated macrophage markers both in vitro and in vivo, indicating the successful inactivation of IL4Rα signaling in macrophages. To examine the role of myeloid IL4Rα during MI, we subjected MyIL4RαKO and littermate floxed control (FC) mice to MI. We found that cardiac function was significantly impaired as a result of myeloid-specific IL4Rα deficiency. This deficiency resulted in a dysregulated inflammatory response consisting of decreased production of anti-inflammatory cytokines. Myeloid IL4Rα deficiency also led to reduced collagen 1 deposition and an imbalance of matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs), with upregulated MMPs and downregulated TIMPs, which resulted in insufficient fibrotic remodeling. In conclusion, this study identifies that myeloid-specific IL4Rα signaling regulates inflammation and fibrotic remodeling during MI. Therefore, myeloid-specific activation of IL4Rα signaling could offer protective benefits after MI.NEW & NOTEWORTHY This study showed, for the first time, the role of endogenous IL4Rα signaling in myeloid cells during cardiac remodeling and the underlying mechanisms. We identified myeloid cells are the critical target cell types of IL4Rα signaling during cardiac remodeling post-MI. Deficiency of myeloid IL4Rα signaling causes deteriorated cardiac function post-MI, due to dysregulated inflammation and insufficient fibrotic remodeling. This study sheds light on the potential of activating myeloid-specific IL4Rα signaling to modify remodeling post-MI. This brings hope to patients with MI and diminishes side effects by cell type-specific instead of whole body treatment.


Subject(s)
Cytokines/metabolism , Inflammation Mediators/metabolism , Macrophages/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptors, Cell Surface/metabolism , Ventricular Function, Left , Ventricular Remodeling , Animals , Cells, Cultured , Disease Models, Animal , Fibrosis , Macrophage Activation , Macrophages/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL