Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Appl Mater Interfaces ; 9(38): 33308-33316, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28870076

ABSTRACT

Although the deposition of alternating layers from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) salts has recently provided a breakthrough in the field of conductive polymers, the cause for the conductivity improvement has remained unclear. In this work, we report a cooperative doping effect between alternating PANI base and PEDOT:PSS layers, resulting in electrical conductivities of 50-100 S cm-1 and power factors of up to 3.0 ± 0.5 µW m-1 K-2, which surpass some of the recent values obtained for protonated PANI/PEDOT:PSS multilayers by a factor of 20. In this case, the simultaneous improvement in the electrical conductivity of both types of layers is caused by the in situ protonation of PANI, which corresponds to the removal of the excess acidic PSS chains from the PEDOT:PSS grains. The interplay between the functional groups' reactivity and the supramolecular chain reorganization leads to an array of preparation-dependent phenomena, including a stepwise increase in the film thickness, an alternation in the electrical conductivity, and the formation of a diverse surface landscape. The latter effect can be traced to a buildup of strain within the layers, which results in either the formation of folds or the shrinkage of the film. These results open new paths for designing nanostructured thin-film thermoelectrics.

SELECTION OF CITATIONS
SEARCH DETAIL