Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 420
Filter
Add more filters

Publication year range
1.
Cell ; 174(1): 156-171.e16, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29909984

ABSTRACT

Extracellular proTGF-Ɵ is covalently linked to "milieu" molecules in the matrix or on cell surfaces and is latent until TGF-Ɵ is released by integrins. Here, we show that LRRC33 on the surface of microglia functions as a milieu molecule and enables highly localized, integrin-αVƟ8-dependent TGF-Ɵ activation. Lrrc33-/- mice lack CNS vascular abnormalities associated with deficiency in TGF-Ɵ-activating integrins but have microglia with a reactive phenotype and after 2Ā months develop ascending paraparesis with loss of myelinated axons and death by 5Ā months. Whole bone marrow transplantation results in selective repopulation of Lrrc33-/- brains with WT microglia and halts disease progression. The phenotypes of WT and Lrrc33-/- microglia in the same brain suggest that there is little spreading of TGF-Ɵ activated from one microglial cell to neighboring microglia. Our results suggest that interactions between integrin-bearing cells and cells bearing milieu molecule-associated TGF-Ɵ provide localized and selective activation of TGF-Ɵ.


Subject(s)
Carrier Proteins/metabolism , Microglia/metabolism , Nervous System/metabolism , Transforming Growth Factor beta/metabolism , Animals , Axons/metabolism , Bone Marrow Transplantation , Brain/metabolism , Carrier Proteins/classification , Carrier Proteins/genetics , Cells, Cultured , Integrins/metabolism , Kaplan-Meier Estimate , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Mutagenesis, Site-Directed , Neurodegenerative Diseases/mortality , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Phylogeny , Protein Binding , Protein Precursors/genetics , Protein Precursors/metabolism , Transforming Growth Factor beta/genetics
2.
Cell ; 173(5): 1111-1122.e10, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29606355

ABSTRACT

The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings withĀ uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis ofĀ neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, andĀ neuromuscular pathology. Our data show thatĀ vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.


Subject(s)
Fetus/virology , Neurons/pathology , Zika Virus Infection/pathology , Zika Virus/pathogenicity , Animals , Animals, Newborn , Apoptosis , Brain/diagnostic imaging , Brain/pathology , Calcinosis/pathology , Calcinosis/veterinary , Female , Gestational Age , Macaca mulatta , Magnetic Resonance Imaging , Necrosis , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Neurons/virology , Pregnancy , Severity of Illness Index , Vasculitis/pathology , Vasculitis/veterinary , Zika Virus Infection/veterinary , Zika Virus Infection/virology
3.
Nature ; 630(8016): 360-367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778109

ABSTRACT

Implanted biomaterials and devices face compromised functionality and efficacy in the long term owing to foreign body reactions and subsequent formation of fibrous capsules at the implant-tissue interfaces1-4. Here we demonstrate that an adhesive implant-tissue interface can mitigate fibrous capsule formation in diverse animal models, including rats, mice, humanized mice and pigs, by reducing the level of infiltration of inflammatory cells into the adhesive implant-tissue interface compared to the non-adhesive implant-tissue interface. Histological analysis shows that the adhesive implant-tissue interface does not form observable fibrous capsules on diverse organs, including the abdominal wall, colon, stomach, lung and heart, over 12 weeks in vivo. In vitro protein adsorption, multiplex Luminex assays, quantitative PCR, immunofluorescence analysis and RNA sequencing are additionally carried out to validate the hypothesis. We further demonstrate long-term bidirectional electrical communication enabled by implantable electrodes with an adhesive interface over 12 weeks in a rat model in vivo. These findings may offer a promising strategy for long-term anti-fibrotic implant-tissue interfaces.


Subject(s)
Biocompatible Materials , Fibrosis , Foreign-Body Reaction , Prostheses and Implants , Tissue Adhesives , Animals , Female , Humans , Male , Mice , Rats , Abdominal Wall , Adsorption , Biocompatible Materials/chemistry , Colon , Electrodes, Implanted , Fibrosis/pathology , Fibrosis/prevention & control , Foreign-Body Reaction/prevention & control , Foreign-Body Reaction/pathology , Heart , Lung , Mice, Inbred C57BL , Organ Specificity , Polymerase Chain Reaction , Rats, Sprague-Dawley , Stomach , Swine , Time Factors , Tissue Adhesives/chemistry , Fluorescent Antibody Technique , Reproducibility of Results , Sequence Analysis, RNA
4.
Cell ; 157(3): 595-610, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24766807

ABSTRACT

PTEN dysfunction plays a crucial role in the pathogenesis of hereditary and sporadic cancers. Here, we show that PTEN homodimerizes and, in this active conformation, exerts lipid phosphatase activity on PtdIns(3,4,5)P3. We demonstrate that catalytically inactive cancer-associated PTEN mutants heterodimerize with wild-type PTEN and constrain its phosphatase activity in a dominant-negative manner. To study the consequences of homo- and heterodimerization of wild-type and mutant PTEN in vivo, we generated Pten knockin mice harboring two cancer-associated PTEN mutations (PtenC124S and PtenG129E). Heterozygous Pten(C124S/+) and Pten(G129E/+) cells and tissues exhibit increased sensitivity to PI3-K/Akt activation compared to wild-type and Pten(+/-) counterparts, whereas this difference is no longer apparent between Pten(C124S/-) and Pten(-/-) cells. Notably, Pten KI mice are more tumor prone and display features reminiscent of complete Pten loss. Our findings reveal that PTEN loss and PTEN mutations are not synonymous and define a working model for the function and regulation of PTEN.


Subject(s)
PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Signal Transduction , Animals , Embryo, Mammalian/cytology , Female , Humans , Loss of Heterozygosity , Male , Mice , Mutation , Protein Multimerization , Proto-Oncogene Proteins c-akt/metabolism
5.
Mol Cell ; 80(2): 279-295.e8, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33065020

ABSTRACT

The PTEN tumor suppressor controls cell death and survival by regulating functions of various molecular targets. While the role of PTEN lipid-phosphatase activity on PtdIns(3,4,5)P3 and inhibition of PI3K pathway is well characterized, the biological relevance of PTEN protein-phosphatase activity remains undefined. Here, using knockin (KI) mice harboring cancer-associated and functionally relevant missense mutations, we show that although loss of PTEN lipid-phosphatase function cooperates with oncogenic PI3K to promote rapid mammary tumorigenesis, the additional loss of PTEN protein-phosphatase activity triggered an extensive cell death response evident in early and advanced mammary tumors. Omics and drug-targeting studies revealed that PI3Ks act to reduce glucocorticoid receptor (GR) levels, which are rescued by loss of PTEN protein-phosphatase activity to restrain cell survival. Thus, we find that the dual regulation of GR by PI3K and PTEN functions as a rheostat that can be exploited for the treatment of PTEN loss-driven cancers.


Subject(s)
Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , PTEN Phosphohydrolase/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Carcinogenesis , Cell Death , Cell Line, Tumor , Cell Proliferation , Dexamethasone/pharmacology , Female , Humans , Isoenzymes/metabolism , Mice , Models, Biological , Mutation/genetics , Organoids/pathology , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Stability , Proteome/metabolism , Proto-Oncogene Proteins c-akt/metabolism
6.
Genes Dev ; 33(23-24): 1718-1738, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31727771

ABSTRACT

More than 90% of small cell lung cancers (SCLCs) harbor loss-of-function mutations in the tumor suppressor gene RB1 The canonical function of the RB1 gene product, pRB, is to repress the E2F transcription factor family, but pRB also functions to regulate cellular differentiation in part through its binding to the histone demethylase KDM5A (also known as RBP2 or JARID1A). We show that KDM5A promotes SCLC proliferation and SCLC's neuroendocrine differentiation phenotype in part by sustaining expression of the neuroendocrine transcription factor ASCL1. Mechanistically, we found that KDM5A sustains ASCL1 levels and neuroendocrine differentiation by repressing NOTCH2 and NOTCH target genes. To test the role of KDM5A in SCLC tumorigenesis in vivo, we developed a CRISPR/Cas9-based mouse model of SCLC by delivering an adenovirus (or an adeno-associated virus [AAV]) that expresses Cre recombinase and sgRNAs targeting Rb1, Tp53, and Rbl2 into the lungs of Lox-Stop-Lox Cas9 mice. Coinclusion of a KDM5A sgRNA decreased SCLC tumorigenesis and metastasis, and the SCLCs that formed despite the absence of KDM5A had higher NOTCH activity compared to KDM5A+/+ SCLCs. This work establishes a role for KDM5A in SCLC tumorigenesis and suggests that KDM5 inhibitors should be explored as treatments for SCLC.


Subject(s)
Cell Differentiation/genetics , Neuroendocrine Cells/cytology , Receptors, Notch/physiology , Retinoblastoma-Binding Protein 2/metabolism , Signal Transduction/genetics , Small Cell Lung Carcinoma/enzymology , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Line , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Histone Demethylases/metabolism , Humans , In Vitro Techniques , Mice , Neuroendocrine Cells/pathology , Small Cell Lung Carcinoma/physiopathology
7.
PLoS Biol ; 21(11): e3002353, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37943878

ABSTRACT

Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo. Here, we developed a fragment of C. difficile toxin B (TcdBFBD), which recognizes and inhibits a subclass of FZDs, FZD1/2/7, and examined whether targeting this FZD subgroup may offer therapeutic benefits for treating breast cancer models in mice. Utilizing 2 basal-like and 1 luminal-like breast cancer models, we found that TcdBFBD reduces tumor-initiating cells and attenuates growth of basal-like mammary tumor organoids and xenografted tumors, without damaging Wnt-sensitive tissues such as bones in vivo. Furthermore, FZD1/2/7-positive cells are enriched in chemotherapy-resistant cells in both basal-like and luminal mammary tumors treated with cisplatin, and TcdBFBD synergizes strongly with cisplatin in inhibiting both tumor types. These data demonstrate the therapeutic value of narrow-spectrum Wnt signaling inhibitor in treating breast cancers.


Subject(s)
Bacterial Toxins , Breast Neoplasms , Clostridioides difficile , Mammary Neoplasms, Animal , Humans , Animals , Mice , Female , Wnt Signaling Pathway , Breast Neoplasms/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/metabolism , Cisplatin
8.
Cell ; 146(2): 209-21, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21737130

ABSTRACT

Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Glioma/pathology , Mosaicism , Neoplastic Stem Cells/pathology , Animals , Astrocytes/pathology , Biomarkers , Brain Neoplasms/embryology , Genes, p53 , Glioma/embryology , Mice , Molecular Sequence Data , Mutation , Neural Stem Cells/pathology , Neurofibromin 1/genetics , Neurons/pathology , Oligodendroglia/pathology
9.
J Biol Chem ; 299(3): 103022, 2023 03.
Article in English | MEDLINE | ID: mdl-36805337

ABSTRACT

The endoplasmic reticulum (ER)-resident protein fat storage-inducing transmembrane protein 2 (FIT2) catalyzes acyl-CoA cleavage inĀ vitro and is required for ER homeostasis and normal lipid storage in cells. The gene encoding FIT2 is essential for the viability of mice and worms. Whether FIT2 acts as an acyl-CoA diphosphatase inĀ vivo and how this activity affects the liver, where the protein was discovered, are unknown. Here, we report that hepatocyte-specific Fitm2 knockout (FIT2-LKO) mice fed a chow diet exhibited elevated acyl-CoA levels, ER stress, and signs of liver injury. These mice also had more triglycerides in their livers than control littermates due, in part, to impaired secretion of triglyceride-rich lipoproteins and reduced capacity for fatty acid oxidation. We found that challenging FIT2-LKO mice with a high-fat diet worsened hepatic ER stress and liver injury but unexpectedly reversed the steatosis phenotype, similar to what is observed in FIT2-deficient cells loaded with fatty acids. Our findings support the model that FIT2 acts as an acyl-CoA diphosphatase inĀ vivo and is crucial for normal hepatocyte function and ER homeostasis in the murine liver.


Subject(s)
Fatty Liver , Liver , Animals , Mice , Liver/metabolism , Triglycerides/metabolism , Fatty Liver/metabolism , Hepatocytes/metabolism , Endoplasmic Reticulum/metabolism , Mice, Knockout , Homeostasis , Membrane Proteins/metabolism
10.
Immunity ; 43(3): 579-90, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26341400

ABSTRACT

Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically engineered mouse model of lung adenocarcinoma and found that Treg cells suppressed anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLSs). TA-TLSs have been described in human lung cancers, but their function remains to be determined. TLSs in this model were spatially associated with >90% of tumors and facilitated interactions between TĀ cells and tumor-antigen-presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and TĀ cell proliferation rates increased in TA-TLSs upon Treg cell depletion, leading to tumor destruction. Thus, we propose that Treg cells in TA-TLSs can inhibit endogenous immune responses against tumors, and targeting these cells might provide therapeutic benefit for cancer patients.


Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Animals , Cell Proliferation , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/metabolism , Flow Cytometry , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Immunohistochemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lymphocyte Activation/immunology , Lymphocyte Depletion , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Transgenic , Microscopy, Confocal , Neoplasms/genetics , Neoplasms/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/metabolism
11.
Nature ; 563(7729): 126-130, 2018 11.
Article in English | MEDLINE | ID: mdl-30305734

ABSTRACT

Genetically modified mice are commonly generated by the microinjection of pluripotent embryonic stem (ES) cells into wild-type host blastocysts1, producing chimeric progeny that require breeding for germline transmission and homozygosity of modified alleles. As an alternative approach and to facilitate studies of the immune system, we previously developed RAG2-deficient blastocyst complementation2. Because RAG2-deficient mice cannot undergo V(D)J recombination, they do not develop B or T lineage cells beyond the progenitor stage2: injecting RAG2-sufficient donor ES cells into RAG2-deficient blastocysts generates somatic chimaeras in which all mature lymphocytes derive from donor ES cells. This enables analysis, in mature lymphocytes, of the functions of genes that are required more generally for mouse development3. Blastocyst complementation has been extended to pancreas organogenesis4, and used to generate several other tissues or organs5-10, but an equivalent approach for brain organogenesis has not yet been achieved. Here we describe neural blastocyst complementation (NBC), which can be used to study the development and function of specific forebrain regions. NBC involves targeted ablation, mediated by diphtheria toxin subunit A, of host-derived dorsal telencephalic progenitors during development. This ablation creates a vacant forebrain niche in host embryos that results in agenesis of the cerebral cortex and hippocampus. Injection of donor ES cells into blastocysts with forebrain-specific targeting of diphtheria toxin subunit A enables donor-derived dorsal telencephalic progenitors to populate the vacant niche in the host embryos, giving rise to neocortices and hippocampi that are morphologically and neurologically normal with respect to learning and memory formation. Moreover, doublecortin-deficient ES cells-generated via a CRISPR-Cas9 approach-produced NBC chimaeras that faithfully recapitulated the phenotype of conventional, germline doublecortin-deficient mice. We conclude that NBC is a rapid and efficient approach to generate complex mouse models for studying forebrain functions; this approach could more broadly facilitate organogenesis based on blastocyst complementation.


Subject(s)
Blastocyst/cytology , Blastocyst/metabolism , Organogenesis , Prosencephalon/cytology , Prosencephalon/embryology , Animals , Chimera/embryology , Chimera/genetics , DNA-Binding Proteins/deficiency , Doublecortin Domain Proteins , Female , Genetic Complementation Test , Germ Cells/metabolism , Hippocampus/anatomy & histology , Hippocampus/cytology , Hippocampus/embryology , Hippocampus/physiology , Male , Mice , Mice, Transgenic , Microtubule-Associated Proteins/deficiency , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/embryology , Neocortex/physiology , Neurons/cytology , Neurons/metabolism , Neuropeptides/deficiency , Phenotype , Prosencephalon/anatomy & histology , Prosencephalon/physiology
12.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607954

ABSTRACT

BRCA1 germline mutations are associated with an increased risk of breast and ovarian cancer. Recent findings of others suggest that BRCA1 mutation carriers also bear an increased risk of esophageal and gastric cancer. Here, we employ a Brca1/Trp53 mouse model to show that unresolved replication stress (RS) in BRCA1 heterozygous cells drives esophageal tumorigenesis in a model of the human equivalent. This model employs 4-nitroquinoline-1-oxide (4NQO) as an RS-inducing agent. Upon drinking 4NQO-containing water, Brca1 heterozygous mice formed squamous cell carcinomas of the distal esophagus and forestomach at a much higher frequency and speed (Ć¢ĀˆĀ¼90 to 120 d) than did wild-type (WT) mice, which remained largely tumor free. Their esophageal tissue, but not that of WT control mice, revealed evidence of overt RS as reflected by intracellular CHK1 phosphorylation and 53BP1 staining. These Brca1 mutant tumors also revealed higher genome mutation rates than those of control animals; the mutational signature SBS4, which is associated with tobacco-induced tumorigenesis; and a loss of Brca1 heterozygosity (LOH). This uniquely accelerated Brca1 tumor model is also relevant to human esophageal squamous cell carcinoma, an often lethal tumor.


Subject(s)
BRCA1 Protein/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Loss of Heterozygosity/genetics , Tumor Suppressor Protein p53/genetics , 4-Nitroquinoline-1-oxide/toxicity , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Checkpoint Kinase 1/metabolism , Disease Models, Animal , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/chemically induced , Esophageal Squamous Cell Carcinoma/pathology , Female , Germ-Line Mutation/genetics , Heterozygote , Humans , Loss of Heterozygosity/drug effects , Male , Mice , Mice, Knockout , Tumor Suppressor p53-Binding Protein 1/metabolism
13.
Genes Dev ; 30(9): 1020-33, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27125672

ABSTRACT

Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2-null mice (Pkm2(-/-)). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2(-/-) mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Energy Metabolism/genetics , Liver Neoplasms/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Thyroid Hormones/genetics , Thyroid Hormones/metabolism , Animals , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/physiopathology , Cell Proliferation/genetics , Diet, High-Fat , Embryo, Mammalian , Embryonic Development/genetics , Female , Gene Expression Regulation, Neoplastic , Germ-Line Mutation , Growth and Development/genetics , Hepatocytes/cytology , Homeostasis/genetics , Liver Neoplasms/enzymology , Liver Neoplasms/physiopathology , Male , Mice , Protein Isoforms , Thyroid Hormone-Binding Proteins
14.
Cell ; 132(5): 875-86, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18329372

ABSTRACT

miR-17 approximately 92, miR-106b approximately 25, and miR-106a approximately 363 belong to a family of highly conserved miRNA clusters. Amplification and overexpression of miR-1792 is observed in human cancers, and its oncogenic properties have been confirmed in a mouse model of B cell lymphoma. Here we show that mice deficient for miR-17 approximately 92 die shortly after birth with lung hypoplasia and a ventricular septal defect. The miR-17 approximately 92 cluster is also essential for B cell development. Absence of miR-17 approximately 92 leads to increased levels of the proapoptotic protein Bim and inhibits B cell development at the pro-B to pre-B transition. Furthermore, while ablation of miR-106b approximately 25 or miR-106a approximately 363 has no obvious phenotypic consequences, compound mutant embryos lacking both miR-106b approximately 25 and miR-17 approximately 92 die at midgestation. These results provide key insights into the physiologic functions of this family of microRNAs and suggest a link between the oncogenic properties of miR-17 approximately 92 and its functions during B lymphopoiesis and lung development.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Multigene Family , Sequence Deletion , 3' Untranslated Regions/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , B-Lymphocytes/cytology , Bcl-2-Like Protein 11 , Cell Survival , Embryonic Stem Cells/metabolism , Fetus/cytology , Genes, Lethal , Heart Septal Defects, Ventricular/genetics , Lung Diseases/genetics , Membrane Proteins/metabolism , Mice , Proto-Oncogene Proteins/metabolism
15.
Nature ; 543(7645): 428-432, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28273064

ABSTRACT

Although the main focus of immuno-oncology has been manipulating the adaptive immune system, harnessing both the innate and adaptive arms of the immune system might produce superior tumour reduction and elimination. Tumour-associated macrophages often have net pro-tumour effects, but their embedded location and their untapped potential provide impetus to discover strategies to turn them against tumours. Strategies that deplete (anti-CSF-1 antibodies and CSF-1R inhibition) or stimulate (agonistic anti-CD40 or inhibitory anti-CD47 antibodies) tumour-associated macrophages have had some success. We hypothesized that pharmacologic modulation of macrophage phenotype could produce an anti-tumour effect. We previously reported that a first-in-class selective class IIa histone deacetylase (HDAC) inhibitor, TMP195, influenced human monocyte responses to the colony-stimulating factors CSF-1 and CSF-2 in vitro. Here, we utilize a macrophage-dependent autochthonous mouse model of breast cancer to demonstrate that in vivo TMP195 treatment alters the tumour microenvironment and reduces tumour burden and pulmonary metastases by modulating macrophage phenotypes. TMP195 induces the recruitment and differentiation of highly phagocytic and stimulatory macrophages within tumours. Furthermore, combining TMP195 with chemotherapy regimens or T-cell checkpoint blockade in this model significantly enhances the durability of tumour reduction. These data introduce class IIa HDAC inhibition as a means to harness the anti-tumour potential of macrophages to enhance cancer therapy.


Subject(s)
Breast Neoplasms/drug therapy , Histone Deacetylase Inhibitors/classification , Histone Deacetylase Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Macrophages/drug effects , Macrophages/immunology , Animals , Benzamides/pharmacology , Benzamides/therapeutic use , Breast Neoplasms/blood supply , Breast Neoplasms/enzymology , Breast Neoplasms/immunology , Cell Differentiation/drug effects , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Female , Histone Deacetylase Inhibitors/therapeutic use , Humans , Lung Neoplasms/immunology , Macrophage Activation/drug effects , Macrophages/cytology , Mice , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Phagocytosis/drug effects , Tumor Burden/drug effects , Tumor Burden/immunology
16.
Proc Natl Acad Sci U S A ; 117(1): 513-521, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871154

ABSTRACT

Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130 Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.


Subject(s)
Gene Editing/methods , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/genetics , Animals , Apoptosis/genetics , CRISPR-Cas Systems/genetics , Cell Line , Cell Proliferation/genetics , Disease Models, Animal , Disease Progression , Feasibility Studies , Humans , Loss of Function Mutation , Lung/pathology , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Neoplasm Staging , Retinoblastoma-Like Protein p107/genetics , Retinoblastoma-Like Protein p130/genetics , Small Cell Lung Carcinoma/pathology , Tumor Burden/genetics , Tumor Suppressor Protein p53/genetics
17.
Proc Natl Acad Sci U S A ; 117(19): 10565-10574, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32345721

ABSTRACT

Numerous mutations that impair retrograde membrane trafficking between endosomes and the Golgi apparatus lead to neurodegenerative diseases. For example, mutations in the endosomal retromer complex are implicated in Alzheimer's and Parkinson's diseases, and mutations of the Golgi-associated retrograde protein (GARP) complex cause progressive cerebello-cerebral atrophy type 2 (PCCA2). However, how these mutations cause neurodegeneration is unknown. GARP mutations in yeast, including one causing PCCA2, result in sphingolipid abnormalities and impaired cell growth that are corrected by treatment with myriocin, a sphingolipid synthesis inhibitor, suggesting that alterations in sphingolipid metabolism contribute to cell dysfunction and death. Here we tested this hypothesis in wobbler mice, a murine model with a homozygous partial loss-of-function mutation in Vps54 (GARP protein) that causes motor neuron disease. Cytotoxic sphingoid long-chain bases accumulated in embryonic fibroblasts and spinal cords from wobbler mice. Remarkably, chronic treatment of wobbler mice with myriocin markedly improved their wellness scores, grip strength, neuropathology, and survival. Proteomic analyses of wobbler fibroblasts revealed extensive missorting of lysosomal proteins, including sphingolipid catabolism enzymes, to the Golgi compartment, which may contribute to the sphingolipid abnormalities. Our findings establish that altered sphingolipid metabolism due to GARP mutations contributes to neurodegeneration and suggest that inhibiting sphingolipid synthesis might provide a useful strategy for treating these disorders.


Subject(s)
Membrane Proteins/genetics , Membrane Proteins/metabolism , Sphingolipids/metabolism , Animals , Disease Models, Animal , Endosomes/metabolism , Fatty Acids, Monounsaturated/pharmacology , Female , Fibroblasts/metabolism , Golgi Apparatus/metabolism , Male , Mice , Mice, Neurologic Mutants , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Motor Neurons/metabolism , Mouse Embryonic Stem Cells , Mutation , Nervous System Malformations/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Protein Transport , Proteomics , Vesicular Transport Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 117(14): 8001-8012, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32193336

ABSTRACT

The cyclin-dependent kinase 5 (CDK5), originally described as a neuronal-specific kinase, is also frequently activated in human cancers. Using conditional CDK5 knockout mice and a mouse model of highly metastatic melanoma, we found that CDK5 is dispensable for the growth of primary tumors. However, we observed that ablation of CDK5 completely abrogated the metastasis, revealing that CDK5 is essential for the metastatic spread. In mouse and human melanoma cells CDK5 promotes cell invasiveness by directly phosphorylating an intermediate filament protein, vimentin, thereby inhibiting assembly of vimentin filaments. Chemical inhibition of CDK5 blocks the metastatic spread of patient-derived melanomas in patient-derived xenograft (PDX) mouse models. Hence, inhibition of CDK5 might represent a very potent therapeutic strategy to impede the metastatic dissemination of malignant cells.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Melanoma, Experimental/pathology , Melanoma/pathology , Skin Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/genetics , Female , Gene Dosage , Humans , Male , Melanoma/drug therapy , Melanoma/genetics , Melanoma/mortality , Melanoma, Experimental/drug therapy , Melanoma, Experimental/genetics , Mice , Mice, Knockout , Phosphorylation/drug effects , Phosphorylation/genetics , Prognosis , Skin/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/mortality , Vimentin/metabolism , Xenograft Model Antitumor Assays
19.
Genes Dev ; 29(17): 1850-62, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26341558

ABSTRACT

Despite the fact that the majority of lung cancer deaths are due to metastasis, the molecular mechanisms driving metastatic progression are poorly understood. Here, we present evidence that loss of Foxa2 and Cdx2 synergizes with loss of Nkx2-1 to fully activate the metastatic program. These three lineage-specific transcription factors are consistently down-regulated in metastatic cells compared with nonmetastatic cells. Knockdown of these three factors acts synergistically and is sufficient to promote the metastatic potential of nonmetastatic cells to that of naturally arising metastatic cells in vivo. Furthermore, silencing of these three transcription factors is sufficient to account for a significant fraction of the gene expression differences between the nonmetastatic and metastatic states in lung adenocarcinoma, including up-regulated expression of the invadopodia component Tks5long, the embryonal proto-oncogene Hmga2, and the epithelial-to-mesenchymal mediator Snail. Finally, analyses of tumors from a genetically engineered mouse model and patients show that low expression of Nkx2-1, Foxa2, and Cdx2 strongly correlates with more advanced tumors and worse survival. Our findings reveal that a large part of the complex transcriptional network in metastasis can be controlled by a small number of regulatory nodes that function redundantly, and loss of multiple nodes is required to fully activate the metastatic program.


Subject(s)
Adenocarcinoma/physiopathology , Hepatocyte Nuclear Factor 3-beta/metabolism , Homeodomain Proteins/metabolism , Lung Neoplasms/physiopathology , Neoplasm Metastasis/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/mortality , Adenocarcinoma of Lung , Animals , Animals, Genetically Modified , CDX2 Transcription Factor , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Gene Silencing , Hepatocyte Nuclear Factor 3-beta/genetics , Homeodomain Proteins/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Mice , Mice, Nude , Nuclear Proteins/genetics , Proto-Oncogene Mas , Thyroid Nuclear Factor 1 , Transcription Factors/genetics
20.
Genes Dev ; 28(5): 479-90, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24589777

ABSTRACT

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles. Global induction of mutant IDH2 expression in adults resulted in dilated cardiomyopathy, white matter abnormalities throughout the central nervous system (CNS), and muscular dystrophy. Embryonic activation of mutant IDH2 resulted in more pronounced phenotypes, including runting, hydrocephalus, and shortened life span, recapitulating the abnormalities observed in D2HGA patients. The diseased hearts exhibited mitochondrial damage and glycogen accumulation with a concordant up-regulation of genes involved in glycogen biosynthesis. Notably, mild cardiac hypertrophy was also observed in nude mice implanted with IDH2(R140Q)-expressing xenografts, suggesting that 2HG may potentially act in a paracrine fashion. Finally, we show that silencing of IDH2(R140Q) in mice with an inducible transgene restores heart function by lowering 2HG levels. Together, these findings indicate that inhibitors of mutant IDH2 may be beneficial in the treatment of D2HGA and suggest that 2HG produced by IDH mutant tumors has the potential to provoke a paraneoplastic condition.


Subject(s)
Cardiomyopathies/genetics , Glutarates/metabolism , Isocitrate Dehydrogenase/genetics , Mutation , Neurodegenerative Diseases/genetics , Animals , Cardiomyopathies/enzymology , Cardiomyopathies/pathology , Cell Line , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heart/physiopathology , Humans , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL