Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters

Publication year range
1.
Phys Rev Lett ; 127(24): 243602, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34951804

ABSTRACT

We report the experimental observation of a superradiant emission emanating from an elongated dense ensemble of laser cooled two-level atoms, with a radial extent smaller than the transition wavelength. In the presence of a strong driving laser, we observe that the system is superradiant along its symmmetry axis. This occurs even though the driving laser is orthogonal to the superradiance direction. This superradiance modifies the spontaneous emission, and, resultantly, the Rabi oscillations. We also investigate Dicke superradiance in the emission of an almost fully inverted system as a function of the atom number. The experimental results are in qualitative agreement with ab-initio, beyond-mean-field calculations.

2.
Phys Rev Lett ; 124(7): 073403, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32142324

ABSTRACT

We study theoretically the scattering of light by an ensemble of N resonant atoms in a subwavelength volume. We consider the low intensity regime so that each atom responds linearly to the field. While N noninteracting atoms would scatter N^{2} more than a single atom, we find that N interacting atoms scatter less than a single atom near resonance. In addition, the scattered power presents strong fluctuations, either from one realization to another or when varying the excitation frequency. We analyze this counterintuitive behavior in terms of collective modes resulting from the light-induced dipole-dipole interactions. We find that for small samples and sufficiently large atom number, their properties are governed only by their volume.

3.
Phys Rev Lett ; 124(2): 023201, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004042

ABSTRACT

We demonstrate three-dimensional trapping of individual Rydberg atoms in holographic optical bottle beam traps. Starting with cold, ground-state ^{87}Rb atoms held in standard optical tweezers, we excite them to nS_{1/2}, nP_{1/2}, or nD_{3/2} Rydberg states and transfer them to a hollow trap at 850 nm. For principal quantum numbers 60≤n≤90, the measured trapping time coincides with the Rydberg state lifetime in a 300 K environment. We show that these traps are compatible with quantum information and simulation tasks by performing single qubit microwave Rabi flopping, as well as by measuring the interaction-induced, coherent spin-exchange dynamics between two trapped Rydberg atoms separated by 40 µm. These results will find applications in the realization of high-fidelity quantum simulations and quantum logic operations with Rydberg atoms.

4.
Opt Lett ; 44(8): 1940-1943, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30985780

ABSTRACT

We report on the fabrication of an all-glass vapor cell with a thickness varying linearly between (exactly) 0 and ∼1 µm. The cell is made in Borofloat glass that allows state-of-the-art super polish roughness, a full optical bonding assembling and easy filling with alkali vapors. We detail the challenging manufacture steps and present experimental spectra resulting from fluorescence and transmission spectroscopy of the cesium D1 line. The very small surface roughness of 1 Å rms is promising to investigate the atom-surface interaction or to minimize parasite stray light.

5.
Phys Rev Lett ; 122(11): 113401, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30951353

ABSTRACT

By measuring the transmission of near-resonant light through an atomic vapor confined in a nanocell we demonstrate a mesoscopic optical response arising from the nonlocality induced by the motion of atoms with a phase coherence length larger than the cell thickness. Whereas conventional dispersion theory-where the local atomic response is simply convolved by the Maxwell-Boltzmann velocity distribution-is unable to reproduce the measured spectra, a model including a nonlocal, size-dependent susceptibility is found to be in excellent agreement with the measurements. This result improves our understanding of light-matter interaction in the mesoscopic regime and has implications for applications where mesoscopic effects may degrade or enhance the performance of miniaturized atomic sensors.

6.
Phys Rev Lett ; 120(24): 243401, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29956978

ABSTRACT

We measure the near-resonant transmission of light through a dense medium of potassium vapor confined in a cell with nanometer thickness in order to investigate the origin and validity of the collective Lamb shift. A complete model including the multiple reflections in the nanocell reproduces accurately the observed line shape. It allows the extraction of a density-dependent shift and width of the bulk atomic medium resonance, deconvolved from the cavity effect. We observe an additional, unexpected dependence of the shift with the thickness of the medium. This extra dependence demands further experimental and theoretical investigations.

7.
Phys Rev Lett ; 116(18): 183601, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27203321

ABSTRACT

We show that the resonance shifts in the fluorescence of a cold gas of rubidium atoms substantially differ from those of thermal atomic ensembles that obey the standard continuous medium electrodynamics. The analysis is based on large-scale microscopic numerical simulations and experimental measurements of the resonance shifts in a steady-state response in light propagation.

8.
Phys Rev Lett ; 116(23): 233601, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341230

ABSTRACT

We measure the coherent scattering of light by a cloud of laser-cooled atoms with a size comparable to the wavelength of light. By interfering a laser beam tuned near an atomic resonance with the field scattered by the atoms, we observe a resonance with a redshift, a broadening, and a saturation of the extinction for increasing atom numbers. We attribute these features to enhanced light-induced dipole-dipole interactions in a cold, dense atomic ensemble that result in a failure of standard predictions such as the "cooperative Lamb shift". The description of the atomic cloud by a mean-field model based on the Lorentz-Lorenz formula that ignores scattering events where light is scattered recurrently by the same atom and by a microscopic discrete dipole model that incorporates these effects lead to progressively closer agreement with the observations, despite remaining differences.

9.
Phys Rev Lett ; 113(13): 133602, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25302887

ABSTRACT

We study the emergence of collective scattering in the presence of dipole-dipole interactions when we illuminate a cold cloud of rubidium atoms with a near-resonant and weak intensity laser. The size of the atomic sample is comparable to the wavelength of light. When we gradually increase the number of atoms from 1 to ~450, we observe a broadening of the line, a small redshift and, consistently with these, a strong suppression of the scattered light with respect to the noninteracting atom case. We compare our data to numerical simulations of the optical response, which include the internal level structure of the atoms.

10.
Phys Rev Lett ; 112(18): 183002, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24856694

ABSTRACT

We study the Rydberg blockade in a system of three atoms arranged in different two-dimensional geometries (linear and triangular configurations). In the strong blockade regime, we observe high-contrast, coherent collective oscillations of the single excitation probability and an almost perfect van der Waals blockade. Our data are consistent with a total population in doubly and triply excited states below 2%. In the partial blockade regime, we directly observe the anisotropy of the van der Waals interactions between |nD> Rydberg states in the triangular configuration. A simple model that only uses independently measured two-body van der Waals interactions fully reproduces the dynamics of the system without any adjustable parameter. These results are extremely promising for scalable quantum information processing and quantum simulation with neutral atoms.

11.
Opt Lett ; 38(11): 1963-5, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23722804

ABSTRACT

We have implemented the Gedanken experiment of an individual atom scattering a wave packet of near-resonant light, and measured the associated Wigner time delay as a function of the frequency of the light. In our apparatus, the atom behaves as a two-level system and we have found delays as large as 42 ns at resonance, limited by the lifetime of the excited state. This delay is an important parameter in the problem of collective near-resonant scattering by an ensemble of interacting particles, which is encountered in many areas of physics.

12.
Phys Rev Lett ; 110(26): 263201, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23848872

ABSTRACT

We report the direct measurement of the van der Waals interaction between two isolated, single Rydberg atoms separated by a controlled distance of a few micrometers. Working in a regime where the single-atom Rabi frequency for excitation to the Rydberg state is comparable to the interaction, we observe partial Rydberg blockade, whereby the time-dependent populations of the various two-atom states exhibit coherent oscillations with several frequencies. Quantitative comparison of the data with a simple model based on the optical Bloch equations allows us to extract the van der Waals energy, and observe its characteristic C6/R6 dependence. The measured C6 coefficients agree well with ab initio calculations, and we observe their dramatic increase with the principal quantum number n of the Rydberg state.

13.
Nature ; 440(7085): 779-82, 2006 Apr 06.
Article in English | MEDLINE | ID: mdl-16598253

ABSTRACT

When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because two possible paths-in which the photons leave by different output ports-interfere destructively. This effect was first observed in parametric downconversion (in which a nonlinear crystal splits a single photon into two photons of lower energy), then from two separate downconversion crystals, as well as with single photons produced one after the other by the same quantum emitter. With the recent developments in quantum information research, much attention has been devoted to this interference effect as a resource for quantum data processing using linear optics techniques. To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. Here we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards the simultaneous emission of many indistinguishable single photons by different emitters. Our data analysis shows that the observed coalescence is mainly limited by wavefront matching of the light emitted by the two atoms, and to a lesser extent by the motion of each atom in its own trap.

14.
Phys Rev Lett ; 106(13): 133003, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21517380

ABSTRACT

We demonstrate the lossless state-selective detection of a single rubidium 87 atom trapped in an optical tweezer. This detection is analogous to the one used on trapped ions. After preparation in either a dark or a bright state, we probe the atom internal state by sending laser light that couples an excited state to the bright state only. The laser-induced fluorescence is collected by a high numerical aperture lens. The single-shot fidelity of the detection is 98.6±0.2% and is presently limited by the dark count noise of the detector. The simplicity of this method opens new perspectives in view of applications to quantum manipulations of neutral atoms.

15.
Phys Rev Lett ; 104(1): 010502, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20366354

ABSTRACT

We report the generation of entanglement between two individual 87Rb atoms in hyperfine ground states |F=1,M=1> and |F=2,M=2> which are held in two optical tweezers separated by 4 microm. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.

16.
Science ; 292(5516): 461-4, 2001 Apr 20.
Article in English | MEDLINE | ID: mdl-11264526

ABSTRACT

We report the realization of a Bose-Einstein condensate of metastable atoms (helium in the lowest triplet state). The excitation energy of each atom with respect to the ground state is 20 electron volts, but inelastic processes that would destroy the sample are suppressed strongly enough in a spin-polarized sample to allow condensation. Our detection scheme takes advantage of the metastability to achieve detection of individual atoms as well as of the decay products of inelastic processes. This detection opens the way toward new studies in mesoscopic quantum statistical physics, as well as in atomic quantum optics.

17.
Science ; 309(5733): 454-6, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16020731

ABSTRACT

By illuminating an individual rubidium atom stored in a tight optical tweezer with short resonant light pulses, we created an efficient triggered source of single photons with a well-defined polarization. The measured intensity correlation of the emitted light pulses exhibits almost perfect antibunching. Such a source of high-rate, fully controlled single-photon pulses has many potential applications for quantum information processing.

18.
Nature ; 412(6842): 52-5, 2001 Jul 05.
Article in English | MEDLINE | ID: mdl-11452301

ABSTRACT

The divergence of quantum and classical descriptions of particle motion is clearly apparent in quantum tunnelling between two regions of classically stable motion. An archetype of such non-classical motion is tunnelling through an energy barrier. In the 1980s, a new process, 'dynamical' tunnelling, was predicted, involving no potential energy barrier; however, a constant of the motion (other than energy) still forbids classically the quantum-allowed motion. This process should occur, for example, in periodically driven, nonlinear hamiltonian systems with one degree of freedom. Such systems may be chaotic, consisting of regions in phase space of stable, regular motion embedded in a sea of chaos. Previous studies predicted dynamical tunnelling between these stable regions. Here we observe dynamical tunnelling of ultracold atoms from a Bose-Einstein condensate in an amplitude-modulated optical standing wave. Atoms coherently tunnel back and forth between their initial state of oscillatory motion (corresponding to an island of regular motion) and the state oscillating 180 degrees out of phase with the initial state.

19.
Phys Rev Lett ; 88(12): 120403, 2002 Mar 25.
Article in English | MEDLINE | ID: mdl-11909433

ABSTRACT

We form ultracold Na2 molecules by single-photon photoassociation of a Bose-Einstein condensate, measuring the photoassociation rate, linewidth, and light shift of the J = 1, v = 135 vibrational level of the A1 Sigma (+)(u) molecular state. The photoassociation rate constant increases linearly with intensity, even where it is predicted that many-body effects might limit the rate. Our observations are in good agreement with a two-body theory having no free parameters.

SELECTION OF CITATIONS
SEARCH DETAIL