Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Pathol ; 262(2): 129-136, 2024 02.
Article in English | MEDLINE | ID: mdl-38013631

ABSTRACT

Trastuzumab has demonstrated clinical efficacy in the treatment of HER2-positive serous endometrial cancer (EC), which led to its incorporation into standard-of-care management of this aggressive disease. Acquired resistance remains an important challenge, however, and its underlying mechanisms in EC are unknown. To define the molecular changes that occur in response to anti-HER2 therapy in EC, targeted next-generation sequencing (NGS), HER2 immunohistochemistry (IHC), and fluorescence in situ hybridization (FISH) were performed on pre- and post-treatment tumour samples from 14 patients with EC treated with trastuzumab or trastuzumab emtansine. Recurrent tumours after anti-HER2 therapy acquired additional genetic alterations compared with matched pre-treatment ECs and frequently showed decreased HER2 protein expression by IHC (7/14, 50%). Complete/near-complete absence of HER2 protein expression (score 0/1+) observed post-treatment (4/14, 29%) was associated with retained HER2 gene amplification (n = 3) or copy number neutral status (n = 1). Whole-exome sequencing performed on primary and recurrent tumours from the latter case, which exhibited genetic heterogeneity of HER2 amplification in the primary tumour, revealed selection of an early HER2-non-amplified clone following therapy. Our findings demonstrate that loss of target expression, by selection of HER2-non-amplified clones or, more commonly, by downregulation of expression, may constitute a mechanism of resistance to anti-HER2 therapy in HER2-positive EC. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Endometrial Neoplasms , Receptor, ErbB-2 , Female , Humans , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , In Situ Hybridization, Fluorescence , Neoplasm Recurrence, Local/genetics , Trastuzumab/therapeutic use , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Gene Amplification
2.
Mod Pathol ; 37(2): 100375, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37925055

ABSTRACT

CDH1 encodes for E-cadherin, and its loss of function is the hallmark of invasive lobular carcinoma (ILC). Albeit vanishingly rare, biallelic CDH1 alterations may be found in nonlobular breast carcinomas (NL-BCs). We sought to determine the clinicopathologic characteristics and repertoire of genetic alterations of NL-BCs harboring CDH1 biallelic genetic alterations. Analysis of 5842 breast cancers (BCs) subjected to clinical tumor-normal sequencing with an FDA-cleared multigene panel was conducted to identify BCs with biallelic CDH1 pathogenic/likely pathogenic somatic mutations lacking lobular features. The genomic profiles of NL-BCs with CDH1 biallelic genetic alterations were compared with those of ILCs and invasive ductal carcinomas (IDCs), matched by clinicopathologic characteristics. Of the 896 CDH1-altered BCs, 889 samples were excluded based on the diagnosis of invasive mixed ductal/lobular carcinoma or ILC or the detection of monoallelic CDH1 alterations. Only 7 of the 5842 (0.11%) BCs harbored biallelic CDH1 alterations and lacked lobular features. Of these, 4/7 (57%) cases were ER-positive/HER2-negative, 1/7 (14%) was ER-positive/HER2-positive, and 2/7 (29%) were ER-negative/HER2-negative. In total, 5/7 (71%) were of Nottingham grade 2, and 2/7 (29%) were of grade 3. The NL-BCs with CDH1 biallelic genetic alterations included a mucinous carcinoma (n = 1), IDCs with focal nested growth (n = 2), IDC with solid papillary (n = 1) or apocrine (n = 2) features, and an IDC of no special type (NST; n = 1). E-cadherin expression, as detected by immunohistochemistry, was absent (3/5) or aberrant (discontinuous membranous/cytoplasmic/granular; 2/5). However, NL-BCs with CDH1 biallelic genetic alterations displayed recurrent genetic alterations, including TP53, PIK3CA (57%, 4/7; each), FGFR1, and NCOR1 (28%, 2/7, each) alterations. Compared with CDH1 wild-type IDC-NSTs, NL-BCs less frequently harbored GATA3 mutations (0% vs 47%, P = .03), but no significant differences were detected when compared with matched ILCs. Therefore, NL-BCs with CDH1 biallelic genetic alterations are vanishingly rare, predominantly comprise IDCs with special histologic features, and have genomic features akin to luminal B ER-positive BCs.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Humans , Female , Carcinoma, Lobular/pathology , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Cadherins/genetics , Genomics , Antigens, CD/genetics
3.
Gynecol Oncol ; 179: 16-23, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890416

ABSTRACT

OBJECTIVE: To assess the clinicopathologic, molecular profiles, and survival outcomes of patients with endometrial carcinomas (ECs) harboring telomerase reverse transcriptase (TERT) hotspot mutations or gene amplification. METHODS: ECs harboring somatic TERT promoter hotspot mutations or gene amplification (TERT-altered) were identified from 1944 ECs that underwent clinical tumor-normal sequencing from 08/2016-12/2021. Clinicopathologic variables, somatic mutation profiles, and survival outcomes of TERT-alt and TERT-wild-type EC were assessed. RESULTS: We identified 66 TERT-altered ECs (43 TERT-mutated and 23 TERT-amplified), representing 3% of the unselected ECs across histologic subtypes. Most TERT-altered ECs were of copy number (CN)-high/TP53abn molecular subtype (n = 40, 60%), followed by microsatellite-unstable (MSI-H) or CN-low/no specific molecular profile (NSMP)(n = 13, 20% each). TERT-amplified and TERT-mutated ECs were molecularly distinct, with TERT-amplified ECs being more genomically instable and more frequently harboring TP53 and PPP2R1A alterations (q < 0.1). Compared to TERT-wild-type ECs, TERT-altered ECs were more commonly of CN-H/TP53abn molecular subtype (31% vs 57%, p = 0.001), serous histology (10% vs 26%, p = 0.004), and were significantly enriched for TP53, CDKN2A/B, and DROSHA somatic genetic alterations (q < 0.1). Median progression-free survival was 18.7 months (95% CI 11.8-not estimable [NE]) for patients with TERT-altered EC and 80.9 months (65.8-NE) for patients with TERT-wild-type EC (HR 0.33, 95% CI 0.21-0.51, p < 0.001). Similarly, median overall survival was 46.7 months (95% CI 30-NE) for TERT-altered EC patients and not reached for TERT-wild-type EC patients (HR 0.24, 95% CI 0.13-0.44, p < 0.001). CONCLUSION: TERT-altered ECs, although rare, are enriched for CN-high/TP53abn tumors, TP53, CDKN2A/B and DROSHA somatic mutations, and independently predict worse survival outcomes.


Subject(s)
Endometrial Neoplasms , Telomerase , Female , Humans , Gene Amplification , Endometrial Neoplasms/pathology , Mutation , Telomerase/genetics , Promoter Regions, Genetic
4.
Histopathology ; 79(2): 176-186, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33527450

ABSTRACT

AIMS: To characterise the genetic alterations in adult primary uterine rhabdomyosarcomas (uRMSs) and to investigate whether these tumours are genetically distinct from uterine carcinosarcomas (UCSs). METHODS AND RESULTS: Three tumours originally diagnosed as primary adult pleomorphic uRMS were subjected to massively parallel sequencing targeting 468 cancer-related genes and RNA-sequencing. Mutational profiles were compared with those of UCSs (n = 57) obtained from The Cancer Genome Atlas. Sequencing data analyses were performed using validated bioinformatic approaches. Pathogenic TP53 mutations and high levels of genomic instability were detected in the three cases. uRMS1 harboured a likely pathogenic YTHDF2-FOXR1 fusion. uRMS2 harboured a PPP2R1A hotspot mutation and amplification of multiple genes, including WHSC1L1, FGFR1, MDM2, and CCNE1, whereas uRMS3 harboured an FBXW7 hotspot mutation and an ANKRD11 homozygous deletion. Hierarchical clustering of somatic mutations and copy number alterations revealed that these tumours initially diagnosed as pleomorphic uRMSs and UCSs were similar. Subsequent comprehensive pathological re-review of the three uRMSs revealed previously unidentified minute pan-cytokeratin-positive atypical glands in one case (uRMS3), favouring its reclassification as UCS with extensive rhabdomyosarcomatous overgrowth. CONCLUSIONS: Adult pleomorphic uRMSs harbour TP53 mutations and high levels of copy number alterations. Our findings underscore the challenge in discriminating between uRMS and UCS with rhabdomyosarcomatous differentiation.


Subject(s)
Carcinosarcoma/genetics , Rhabdomyosarcoma/genetics , Uterine Neoplasms/genetics , Adult , Carcinosarcoma/pathology , Cluster Analysis , DNA Copy Number Variations , Female , Gene Amplification , Gene Fusion , Genes, p53/genetics , Genomic Instability , High-Throughput Nucleotide Sequencing , Humans , Mutation , Rhabdomyosarcoma/pathology , Sequence Analysis, DNA , Sequence Analysis, RNA , Uterine Neoplasms/pathology
5.
Gynecol Oncol ; 161(2): 535-544, 2021 05.
Article in English | MEDLINE | ID: mdl-33622519

ABSTRACT

OBJECTIVE: To characterize and compare the molecular subtypes and profiles of prospectively-accrued newly-diagnosed early- and advanced-stage endometrial cancers (ECs). METHODS: EC patients consented to an IRB-approved protocol of massively parallel sequencing of 410-468 cancer-related genes; 175 ECs of 7 histologic types (n = 135 FIGO stages I/II, n = 40 FIGO stages III/IV) were included. Previously reported sequencing data from 99 additional advanced-stage ECs were retrieved for comparisons. RESULTS: Irrespective of histologic type, all 175 ECs could be stratified into the molecular subtypes, with 75 (43%) being of p53 wild-type, 49 (28%) MMR-deficient, 39 (22%) p53 abnormal and 12 (7%) of POLE molecular subtypes. Subtype distribution, mutational and copy number profiles varied according to histologic type. In endometrioid ECs, genetic alterations varied according to histologic grade. Potential therapeutic targets, including high tumor mutational burden, ERBB2 amplification and PIK3CA hotspot mutations, were found across histologic types in 63% (n = 110) of all ECs. Compared to their early-stage counterparts, advanced-stage endometrioid ECs had a significantly higher fraction of genome altered (median 0.1% vs 12%, p < 0.001) and ARID1B mutations (0% vs 11%, p = 0.01), and advanced-stage serous ECs harbored more frequent ERBB2 amplification (18% vs 8%, p > 0.05) and PIK3CA mutations (46% vs 27%, p > 0.05). Whole-genome doubling was found in advanced- but not early-stage carcinosarcomas and clear cell carcinomas. CONCLUSIONS: Our findings demonstrate the molecular heterogeneity within and across histologic types of EC and the increased genomic complexity of advanced-stage ECs. Molecular subtypes are present across EC histologic types and may help stratify EC patients for prognostic and therapeutic purposes.


Subject(s)
Endometrial Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/pathology , Female , Gene Amplification , Gene Duplication , Genes, erbB-2 , Genome, Human , Genomic Instability , Humans , Middle Aged , Neoplasm Staging , Receptor, ErbB-2/genetics
6.
Histopathology ; 74(4): 638-650, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30565721

ABSTRACT

AIMS: Low-grade serous carcinomas (LGSCs) and their precursors serous borderline tumours (SBTs) characteristically harbour mutations in BRAF, KRAS or NRAS but rarely in TP53, whereas high-grade serous carcinomas (HGSCs) are characterised by frequent TP53 mutations but rare BRAF, KRAS or NRAS mutations. In a small subset of cases, LGSCs and/or SBTs develop into high-grade tumours, including HGSCs and poorly differentiated carcinomas (PDCs). Here, we sought to define the repertoire of somatic genetic alterations in low-grade serous tumours and synchronous or metachronous high-grade adnexal carcinomas. METHODS AND RESULTS: DNA extracted from five SBTs/LGSCs and synchronous or metachronous HGSCs/PDCs and matched normal tissue was subjected to massively parallel sequencing targeting all exons and selected non-coding regions of 341 cancer-related genes. The low-grade and high-grade tumours from a given case were related, and shared mutations and copy number alterations. Progression from low-grade to high-grade lesions was observed, and involved the acquisition of additional mutations and/or copy number alterations, or shifts from subclonal to clonal mutations. Only two (an HGSC and a PDC) of the five high-grade tumours investigated harboured TP53 mutations, whereas NRAS and KRAS hotspot mutations were seen in two HGSCs and one HGSC, respectively. CONCLUSIONS: Our results suggest that progression from SBT to HGSC may take place in a subset of cases, and that at least some of the rare HGSCs lacking TP53 mutations may be derived from a low-grade serous precursor.


Subject(s)
Biomarkers, Tumor/genetics , Cystadenocarcinoma, Serous/genetics , Cystadenoma, Serous/genetics , Genital Neoplasms, Female/genetics , Adult , Aged , Aged, 80 and over , Cystadenocarcinoma, Serous/pathology , Cystadenoma, Serous/pathology , Disease Progression , Female , Genital Neoplasms, Female/pathology , Humans , Middle Aged , Neoplasm Grading , Neoplasms, Multiple Primary/pathology , Neoplasms, Second Primary/pathology
7.
Histopathology ; 75(2): 193-201, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30843621

ABSTRACT

AIMS: Polymorphous adenocarcinoma (PAC) usually follows an indolent course, but some cases may show recurrences and high-grade features. The genetic events associated with recurrences and high-grade versions are yet to be defined. Our aim was to determine the genetic underpinning of recurrent PACs of the salivary gland and the repertoire of somatic genetic alterations in cases with high-grade histology. METHODS AND RESULTS: Four PACs from three patients, including one case with matching primary and recurrent tumours, one de-novo high-grade PAC, and a PAC that transformed to a high-grade tumour following multiple recurrences, were subjected to targeted sequencing (Memorial Sloan Kettering Mutation Profiling of Actionable Cancer Targets assay) or whole-exome sequencing. Both matching primary and recurrent tumours, and the de-novo high-grade PAC, harboured clonal PRKD1 E710D hotspot mutations, whereas the PAC that underwent high-grade transformation upon recurrence, which was wild-type for PRKD1, harboured a PRKD2 rearrangement. The PACs analysed here also harboured mutations targeting cancer genes such as PIK3CA, SETD2, ARID1A, and NOTCH2. A clonal decomposition analysis of the matching primary and recurrent PACs revealed that a minor subclone from the primary tumour became dominant in the recurrent tumour following a clonal selection evolutionary pattern. CONCLUSIONS: Our findings demonstrate that recurrent and high-grade PACs are underpinned by PRKD1 E710D hotspot mutations or PRKD2 rearrangements, and that recurrences of PACs may stem from the selection of pre-existing subclones in the primary tumour.


Subject(s)
Adenocarcinoma/genetics , Neoplasm Recurrence, Local/genetics , Protein Kinase C/genetics , Protein Kinases/genetics , Salivary Gland Neoplasms/genetics , Adenocarcinoma/pathology , Aged , Aged, 80 and over , Female , Gene Rearrangement , Genomics , Humans , Male , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Recurrence, Local/pathology , Protein Kinase D2 , Salivary Gland Neoplasms/pathology
8.
Histopathology ; 75(1): 139-145, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30843622

ABSTRACT

AIMS: Micropapillary variant of mucinous carcinoma of the breast (MPMC) is a rare histological form of oestrogen receptor (ER)-positive invasive carcinoma that is characterised by micropapillary clusters of tumour cells in lakes of extracellular mucin. The aims of this study were to determine the genetic alterations underpinning MPMCs, and to determine whether they overlap with those of mucinous carcinomas and/or invasive micropapillary carcinomas. METHODS AND RESULTS: DNA from five MPMCs was subjected to whole-exome sequencing. Somatic mutations, copy number alterations and mutational signatures were determined with state-of-the-art bioinformatics methods. No mutations in genes significantly mutated in breast cancer, including TP53, PIK3CA, GATA3, and MAP3K1, were detected. We identified copy number alterations that have been reported in invasive micropapillary carcinomas, such as recurrent gains in 1q, 6p, 8q, and 10q, and recurrent losses in 16q, 11q, and 13q, as well as a recurrent 8p12-8p11.2 amplification encompassing FGFR1. Like mucinous carcinomas, three of the five MPMCs analysed lacked PIK3CA mutations, 1q gains, and 16q losses, which are the hallmark genetic alterations of ER-positive breast cancers, whereas two MPMCs harboured 16q losses and/or a complex pattern of copy number alterations similar to those found in breast-invasive micropapillary carcinomas. CONCLUSIONS: MPMCs are heterogeneous at the genetic level; some tumours show a pattern of somatic genetic alterations similar to those of mucinous carcinomas, whereas others resemble invasive micropapillary carcinomas at the genetic level. These findings suggest that MPMCs may not constitute one histological subtype, but rather a convergent phenotype that can stem from mucinous carcinomas or invasive micropapillary carcinomas.


Subject(s)
Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Papillary/genetics , Carcinoma, Papillary/pathology , Adenocarcinoma, Mucinous/metabolism , Adult , Aged , Biomarkers, Tumor/genetics , Breast Neoplasms/metabolism , Carcinoma, Papillary/metabolism , DNA Copy Number Variations , Female , Humans , Middle Aged , Mutation , Phenotype , Receptors, Estrogen/metabolism
10.
NPJ Precis Oncol ; 8(1): 33, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347189

ABSTRACT

CDH1 (E-cadherin) bi-allelic inactivation is the hallmark alteration of breast invasive lobular carcinoma (ILC), resulting in its discohesive phenotype. A subset of ILCs, however, lack CDH1 genetic/epigenetic inactivation, and their genetic underpinning is unknown. Through clinical targeted sequencing data reanalysis of 364 primary ILCs, we identified 25 ILCs lacking CDH1 bi-allelic genetic alterations. CDH1 promoter methylation was frequent (63%) in these cases. Targeted sequencing reanalysis revealed 3 ILCs harboring AXIN2 deleterious fusions (n = 2) or loss-of-function mutation (n = 1). Whole-genome sequencing of 3 cases lacking bi-allelic CDH1 genetic/epigenetic inactivation confirmed the AXIN2 mutation and no other cell-cell adhesion genetic alterations but revealed a new CTNND1 (p120) deleterious fusion. AXIN2 knock-out in MCF7 cells resulted in lobular-like features, including increased cellular migration and resistance to anoikis. Taken together, ILCs lacking CDH1 genetic/epigenetic alterations are driven by inactivating alterations in other cell adhesion genes (CTNND1 or AXIN2), endorsing a convergent phenotype in ILC.

11.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746158

ABSTRACT

Acquired genetic alterations commonly drive resistance to endocrine and targeted therapies in metastatic breast cancer 1-7 , however the underlying processes engendering these diverse alterations are largely uncharacterized. To identify the mutational processes operant in breast cancer and their impact on clinical outcomes, we utilized a well-annotated cohort of 3,880 patient samples with paired tumor-normal sequencing data. The mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were highly prevalent and enriched in post-treatment compared to treatment-naïve hormone receptor-positive (HR+) cancers. APOBEC3 mutational signatures were independently associated with shorter progression-free survival on antiestrogen plus CDK4/6 inhibitor combination therapy in patients with HR+ metastatic breast cancer. Whole genome sequencing (WGS) of breast cancer models and selected paired primary-metastatic samples demonstrated that active APOBEC3 mutagenesis promoted resistance to both endocrine and targeted therapies through characteristic alterations such as RB1 loss-of-function mutations. Evidence of APOBEC3 activity in pre-treatment samples illustrated a pervasive role for this mutational process in breast cancer evolution. The study reveals APOBEC3 mutagenesis to be a frequent mediator of therapy resistance in breast cancer and highlights its potential as a biomarker and target for overcoming resistance.

12.
Cancer Res ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106449

ABSTRACT

Artificial intelligence (AI)-systems can improve cancer diagnosis, yet their development often relies on subjective histological features as ground truth for training. Here, we developed an AI-model applied to histological whole-slide images (WSIs) using CDH1 bi-allelic mutations, pathognomonic for invasive lobular carcinoma (ILC) in breast neoplasms, as ground truth. The model accurately predicted CDH1 bi-allelic mutations (accuracy=0.95) and diagnosed ILC (accuracy=0.96). A total of 74% of samples classified by the AI-model as having CDH1 bi-allelic mutations but lacking these alterations displayed alternative CDH1 inactivating mechanisms, including a deleterious CDH1 fusion gene and non-coding CDH1 genetic alterations. Analysis of internal and external validation cohorts demonstrated 0.95 and 0.89 accuracy for ILC diagnosis, respectively. The latent features of the AI-model correlated with human-explainable histopathologic features. Taken together, this study reports the construction of an AI-algorithm trained using a genetic rather than histologic ground truth that can robustly classify ILCs and uncover CDH1 inactivating mechanisms, providing the basis for orthogonal ground truth utilization for development of diagnostic AI-models applied to WSI.

13.
J Clin Oncol ; 41(33): 5151-5162, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37607324

ABSTRACT

PURPOSE: To determine the genetic predisposition underlying pancreatic acinar cell carcinoma (PACC) and characterize its genomic features. METHODS: Both somatic and germline analyses were performed using an Food and Drug Administration-authorized matched tumor/normal sequencing assay on a clinical cohort of 28,780 patients with cancer, 49 of whom were diagnosed with PACC. For a subset of PACCs, whole-genome sequencing (WGS; n = 12) and RNA sequencing (n = 6) were performed. RESULTS: Eighteen of 49 (36.7%) PACCs harbored germline pathogenic variants in homologous recombination (HR) and DNA damage response (DDR) genes, including BRCA1 (n = 1), BRCA2 (n = 12), PALB2 (n = 2), ATM (n = 2), and CHEK2 (n = 1). Thirty-one PACCs displayed pure, and 18 PACCs harbored mixed acinar cell histology. Fifteen of 31 (48%) pure PACCs harbored a germline pathogenic variant affecting HR-/DDR-related genes. BRCA2 germline pathogenic variants (11 of 31, 35%) were significantly more frequent in pure PACCs than in pancreatic adenocarcinoma (86 of 2,739, 3.1%; P < .001), high-grade serous ovarian carcinoma (67 of 1,318, 5.1%; P < .001), prostate cancer (116 of 3,401, 3.4%; P < .001), and breast cancer (79 of 3,196, 2.5%; P < .001). Genomic features of HR deficiency (HRD) were detected in 7 of 12 PACCs undergoing WGS, including 100% (n = 6) of PACCs with germline HR-related pathogenic mutations and 1 of 6 PACCs lacking known pathogenic alterations in HR-related genes. Exploratory analyses revealed that in PACCs, the repertoire of somatic driver genetic alterations and the load of neoantigens with high binding affinity varied according to the presence of germline pathogenic alterations affecting HR-/DDR-related genes and/or HRD. CONCLUSION: In a large pan-cancer cohort, PACC was identified as the cancer type with the highest prevalence of both BRCA2 germline pathogenic variants and genomic features of HRD, suggesting that PACC should be considered as part of the spectrum of BRCA-related malignancies.


Subject(s)
Carcinoma, Acinar Cell , Pancreatic Neoplasms , Male , Humans , Carcinoma, Acinar Cell/genetics , Pancreatic Neoplasms/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Germ-Line Mutation , Genetic Predisposition to Disease , Homologous Recombination , Genomics , Pancreatic Neoplasms
14.
Clin Cancer Res ; 29(2): 410-421, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36007103

ABSTRACT

PURPOSE: We sought to determine whether sequencing analysis of circulating cell-free DNA (cfDNA) in patients with prospectively accrued endometrial cancer captures the mutational repertoire of the primary lesion and allows for disease monitoring. EXPERIMENTAL DESIGN: Peripheral blood was prospectively collected from 44 newly diagnosed patients with endometrial cancer over a 24-month period (i.e., baseline, postsurgery, every 6 months after). DNA from the primary endometrial cancers was subjected to targeted next-generation sequencing (NGS) of 468 cancer-related genes, and cfDNA to a high-depth NGS assay of 129 genes with molecular barcoding. Sequencing data were analyzed using validated bioinformatics methods. RESULTS: cfDNA levels correlated with surgical stage in endometrial cancers, with higher levels of cfDNA being present in advanced-stage disease. Mutations in cfDNA at baseline were detected preoperatively in 8 of 36 (22%) patients with sequencing data, all of whom were diagnosed with advanced-stage disease, high tumor volume, and/or aggressive histologic type. Of the 38 somatic mutations identified in the primary tumors also present in the cfDNA assay, 35 (92%) and 38 (100%) were detected at baseline and follow-up, respectively. In 6 patients with recurrent disease, changes in circulating tumor DNA (ctDNA) fraction/variant allele fractions in cfDNA during follow-up closely mirrored disease progression and therapy response, with a lead time over clinically detected recurrence in two cases. The presence of ctDNA at baseline (P < 0.001) or postsurgery (P = 0.014) was significantly associated with reduced progression-free survival. CONCLUSIONS: cfDNA sequencing analysis in patients with endometrial cancer at diagnosis has prognostic value, and serial postsurgery cfDNA analysis enables disease and treatment response monitoring. See related commentary by Grant et al., p. 305.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Endometrial Neoplasms , Female , Humans , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Prognosis , Mutation , High-Throughput Nucleotide Sequencing/methods , Biomarkers, Tumor/genetics
15.
Biomolecules ; 12(12)2022 12 06.
Article in English | MEDLINE | ID: mdl-36551247

ABSTRACT

Analysis of cell-free circulating tumor DNA obtained by liquid biopsy is a non-invasive approach that may provide clinically actionable information when conventional tissue biopsy is inaccessible or infeasible. Here, we followed a patient with hormone receptor-positive and human epidermal growth factor receptor (HER) 2-negative breast cancer who developed bone metastases seven years after mastectomy. We analyzed circulating cell-free DNA (cfDNA) extracted from plasma using high-depth massively parallel sequencing targeting 468 cancer-associated genes, and we identified a clonal hotspot missense mutation in the PIK3CA gene (3:178952085, A > G, H1047R) and amplification of the CCND1 gene. Whole-exome sequencing revealed that both alterations were present in the primary tumor. After treatment with ribociclib plus letrozole, the genetic abnormalities were no longer detected in cfDNA. These results underscore the clinical utility of combining liquid biopsy and comprehensive genomic profiling to monitor treatment response in patients with metastasized breast cancer.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Letrozole/therapeutic use , Circulating Tumor DNA/genetics , Mastectomy , Aromatase Inhibitors , Genomics , Biomarkers, Tumor/genetics , Mutation
16.
EBioMedicine ; 82: 104169, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882101

ABSTRACT

BACKGROUND: Late distant recurrence is a challenge for the treatment of invasive lobular carcinoma (ILC) of the breast. Despite in-depth characterisation of primary ILC, the molecular landscape of metastatic ILC is still only partially understood. METHODS: We retrospectively identified 38 ILC patients from the tissue banks of six European institutions. DNA extracted from patient matched primary and metastatic FFPE tissue blocks was whole genome sequenced to compute somatic copy number aberrations. This, in turn, was used to infer the evolutionary history of these patients. FINDINGS: The data show different metastatic seeding patterns, with both an early and late divergence of the metastatic lineage observed in ILC. Additionally, cascading dissemination from a metastatic precursor was a dominant rule. Alterations in key cancer driver genes, such as TP53 or CCND1, were acquired early while additional aberrations were present only in the metastatic branch. In about 30% of the patients, the metastatic lineage harboured less aberrations than the primary tumour suggesting a period of tumour dormancy or prolonged adaptation at the distant site. This phenomenon was mostly observed in tumours from de novo metastatic patients. INTERPRETATION: Our results provide insights into ILC evolution and offer potential paths for optimised ILC care. FUNDING: This work has received financial support from Les Amis de l'Institut Bordet, MEDIC, the Breast Cancer Research Foundation (BCRF) and the Belgian Fonds National de la Recherche Scientifique (F.R.S-FNRS).


Subject(s)
Breast Neoplasms , Carcinoma, Lobular , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Lobular/genetics , Carcinoma, Lobular/pathology , Carcinoma, Lobular/secondary , Female , Humans , Phylogeny , Retrospective Studies
17.
Cancer Discov ; 12(4): 949-957, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34949653

ABSTRACT

Mosaic mutations in normal tissues can occur early in embryogenesis and be associated with hereditary cancer syndromes when affecting cancer susceptibility genes (CSG). Their contribution to apparently sporadic cancers is currently unknown. Analysis of paired tumor/blood sequencing data of 35,310 patients with cancer revealed 36 pathogenic mosaic variants affecting CSGs, most of which were not detected by prior clinical genetic testing. These CSG mosaic variants were consistently detected at varying variant allelic fractions in microdissected normal tissues (n = 48) from distinct embryonic lineages in all individuals tested, indicating their early embryonic origin, likely prior to gastrulation, and likely asymmetrical propagation. Tumor-specific biallelic inactivation of the CSG affected by a mosaic variant was observed in 91.7% (33/36) of cases, and tumors displayed the hallmark pathologic and/or genomic features of inactivation of the respective CSGs, establishing a causal link between CSG mosaic variants arising in early embryogenesis and the development of apparently sporadic cancers. SIGNIFICANCE: Here, we demonstrate that mosaic variants in CSGs arising in early embryogenesis contribute to the oncogenesis of seemingly sporadic cancers. These variants can be systematically detected through the analysis of tumor/normal sequencing data, and their detection may affect therapeutic decisions as well as prophylactic measures for patients and their offspring. See related commentary by Liggett and Sankaran, p. 889. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Neoplasms , Alleles , Embryonic Development/genetics , Genetic Testing , Humans , Mutation , Neoplasms/genetics
18.
Comput Struct Biotechnol J ; 19: 5667-5677, 2021.
Article in English | MEDLINE | ID: mdl-34765087

ABSTRACT

Nearly half of the human genome is occupied by repetitive sequences of ancient virus-like genetic elements. The largest class, comprising 17% of the genome, belong to the type 1 Long INterspersed Elements (LINE-1) and are the only class capable of autonomous propagation in the genome. When epigenetic silencing mechanisms of LINE-1 fail, the proteins encoded by LINE-1 engage in reverse transcription to make new copies of their own or other DNAs that are pasted back into the genome. To elucidate how LINE-1 is dysregulated as a result of carcinogen exposure, we developed a computational model of key elements in the LINE-1 lifecycle, namely, the role of cytosolic ribonuclease (RNase), RNA interference (RNAi) by the antisense ORF0 RNA, and sequestration of LINE-1 products into stress granules and multivesicular structures. The model showed that when carcinogen exposure is represented as either a sudden increase in LINE-1 mRNA count, or as an increase in mRNA transcription rate, the retrotransposon copy number exhibits a distinct threshold behavior above which LINE-1 enters a positive feedback loop that allows the cDNA copy number to grow exponentially. We also found that most of the LINE-1 RNA was degraded via the RNAase pathway and that neither ORF0 RNAi, nor the sequestration of LINE-1 products into granules and multivesicular structures, played a significant role in regulating the retrotransposon's life cycle. Several aspects of the prediction agree with experimental results and indicate that the model has significant potential to inform future experiments related to LINE-1 activation.

19.
Mol Oncol ; 15(4): 1024-1039, 2021 04.
Article in English | MEDLINE | ID: mdl-33021035

ABSTRACT

Metaplastic breast carcinoma (MBC) and uterine carcinosarcoma (UCS) are rare aggressive cancers, characterized by an admixture of adenocarcinoma and areas displaying mesenchymal/sarcomatoid differentiation. We sought to define whether MBCs and UCSs harbor similar patterns of genetic alterations, and whether the different histologic components of MBCs and UCSs are clonally related. Whole-exome sequencing (WES) data from MBCs (n = 35) and UCSs (n = 57, The Cancer Genome Atlas) were reanalyzed to define somatic genetic alterations, altered signaling pathways, mutational signatures, and genomic features of homologous recombination DNA repair deficiency (HRD). In addition, the carcinomatous and sarcomatous components of an additional cohort of MBCs (n = 11) and UCSs (n = 6) were microdissected separately and subjected to WES, and their clonal relatedness was assessed. MBCs and UCSs harbored recurrent genetic alterations affecting TP53, PIK3CA, and PTEN, similar patterns of gene copy number alterations, and an enrichment in alterations affecting the epithelial-to-mesenchymal transition (EMT)-related Wnt and Notch signaling pathways. Differences were observed, however, including a significantly higher prevalence of FAT3 and FAT1 somatic mutations in MBCs compared to UCSs, and conversely, UCSs significantly more frequently harbored somatic mutations affecting FBXW7 and PPP2R1A as well as HER2 amplification than MBCs. Genomic features of HRD and biallelic alterations affecting bona fide HRD-related genes were found to be more prevalent in MBCs than in UCSs. The distinct histologic components of MBCs and UCSs were clonally related in all cases, with the sarcoma component likely stemming from a minor subclone of the carcinoma component in the samples with interpretable chronology of clonal evolution. Despite the similar histologic features and pathways affected by genetic alterations, UCSs differ from MBCs on the basis of FBXW7 and PPP2R1A mutations, HER2 amplification, and lack of HRD, supporting the notion that these entities are more than mere phenocopies of the same tumor type in different anatomical sites.


Subject(s)
Breast Neoplasms/genetics , Carcinosarcoma/genetics , Uterine Neoplasms/genetics , DNA Copy Number Variations , DNA Mutational Analysis , Epithelial-Mesenchymal Transition , F-Box-WD Repeat-Containing Protein 7/genetics , Female , Humans , Mutation , Protein Phosphatase 2/genetics , Receptor, ErbB-2/genetics , Exome Sequencing
20.
Clin Cancer Res ; 27(20): 5607-5618, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34321278

ABSTRACT

PURPOSE: The heterogeneity of response to anti-HER2 agents represents a major challenge in patients with HER2-positive breast cancer. To better understand the sensitivity and resistance to trastuzumab and lapatinib, we investigated the role of copy number aberrations (CNA) in predicting pathologic complete response (pCR) and survival outcomes in the NeoALTTO trial. EXPERIMENTAL DESIGN: The neoadjuvant phase III NeoALTTO trial enrolled 455 patients with HER2-positive early-stage breast cancer. DNA samples from 269 patients were assessed for genome-wide copy number profiling. Recurrent CNAs were found with GISTIC2.0. RESULTS: CNA estimates were obtained for 184 patients included in NeoALTTO. Among those, matched transcriptome and whole-exome data were available for 154 and 181 patients, respectively. A significant association between gene copy number and pCR was demonstrated for ERBB2 amplification. Nevertheless, ERBB2 amplification ceased to be predictive once ERBB2 expression level was considered. GISTIC2.0 analysis revealed 159 recurrent CNA regions. Lower copy number levels of the 6q23-24 locus predicted absence of pCR in the whole cohort and in the estrogen receptor-positive subgroup. 6q23-24 deletion was significantly more frequent in TP53 wild-type (WT) compared with TP53-mutated, resulting in copy number levels significantly associated with lack of pCR only in the TP53 WT subgroup. Interestingly, a gene-ontology analysis highlighted several immune processes correlated to 6q23-24 copy number. CONCLUSIONS: Our analysis identified ERBB2 copy number as well as 6q23-24 CNAs as predictors of response to anti-HER2-based treatment. ERBB2 expression outperformed ERBB2 amplification. The complexity of the 6q23-24 region warrants further investigation.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , DNA Copy Number Variations , Female , Humans , Neoplasm Recurrence, Local , Receptor, ErbB-2/genetics , Receptor, ErbB-2/therapeutic use , Trastuzumab/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL