ABSTRACT
Glaucoma is the second leading cause of blindness worldwide. This multifactorial, neurodegenerative group of diseases is characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, leading to irreversible visual impairment and blindness. There is a huge unmet and urging need for the development of new and translatable strategies and treatment options to prevent this progressive loss of RGC. Accumulating evidence points towards a critical role of neuroinflammation, in particular microglial cells, in the pathogenesis of glaucoma. Leukotrienes are mediators of neuroinflammation and are involved in many neurodegenerative diseases. Therefore, we tested the leukotriene receptors CysLT1R/GPR17-selective antagonist Montelukast (MTK) for its efficacy to modulate the reactive state of microglia in order to ameliorate RGCs loss in experimental glaucoma. Ocular hypertension (OHT) was induced unilaterally by injection of 8 µm magnetic microbead (MB) into the anterior chamber of female Brown Norway rats. The contralateral, untreated eye served as control. Successful induction of OHT was verified by daily IOP measurement using a TonoLab rebound tonometer. Simultaneously to OHT induction, one group received daily MTK treatment and the control group vehicle solution by oral gavage. Animals were sacrificed 13-15 days after MB injection. Retina and optic nerves (ON) of OHT and contralateral eyes were analyzed by immunofluorescence with specific markers for RGCs (Brn3a), microglial cells/macrophages (Iba1 and CD68), and cysteinyl leukotriene pathway receptors (CysLT1R and GPR17). Protein labeling was documented by confocal microscopy and analyzed with ImageJ plugins. Further, mRNA expression of genes of the inflammatory and leukotriene pathway was analyzed in retinal tissue. MTK treatment resulted in a short-term IOP reduction at day 2, which dissipated by day 5 of OHT induction in MTK treated animals. Furthermore, MTK treatment resulted in a decreased activation of Iba1+ microglial cells in the retina and ON, and in a significantly increased RGC survival in OHT eyes. Within the retina, GPR17 and CysLT1R expression was demonstrated in single RCGs and in microglial cells respectively. Further, increased mRNA expression of pro-inflammatory genes was detected in OHT induced retinas. In the ON, OHT induction increased the number of GPR17+ cells, showing a trend of reduction following MTK treatment. This study shows for the first time a significantly increased RGC survival in an acute OHT model following treatment with the leukotriene receptor antagonist MTK. These results strongly suggest a neuroprotective effect of MTK and a potential new therapeutic strategy for glaucoma treatment.
Subject(s)
Leukotriene Antagonists/therapeutic use , Microglia/metabolism , Ocular Hypertension/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Leukotriene/metabolism , Retinal Ganglion Cells/physiology , Acetates/therapeutic use , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Biomarkers/metabolism , Calcium-Binding Proteins/metabolism , Cell Survival/physiology , Cyclopropanes/therapeutic use , Disease Models, Animal , Electroretinography , Female , Gene Expression Regulation/physiology , Intraocular Pressure/physiology , Microfilament Proteins/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Ocular Hypertension/physiopathology , Quinolines/therapeutic use , RNA, Messenger/genetics , Rats , Rats, Inbred BN , Real-Time Polymerase Chain Reaction , Retina/metabolism , Retina/physiopathology , Sulfides/therapeutic use , Tonometry, Ocular , Transcription Factor Brn-3B/metabolismABSTRACT
Pericytes (PCs) are specialized cells located abluminal of endothelial cells (ECs) on capillaries, embedded within the same basement membrane. They are essential regulators of vascular development, remodeling, and blood-retina-barrier (BRB) tightness and are therefore important components to maintain tissue homeostasis. The perivascular localization and expression of contractile proteins suggest that PCs participate in capillary blood flow regulation and neurovascular coupling. Due to their ability to differentiate into various cell types in vitro, they are regarded as potential cells for tissue repair and therapeutic approaches in regenerative medicine. Altered function or loss of PCs is associated with a multitude of CNS diseases, including diabetic retinopathy (DR). In this chapter, we will provide a short overview of retinal vascular development, the origin of PCs, and focus on PCs in retinopathy of prematurity (ROP) and in the diabetic retina. Further, animal models to study the fate of PCs and the potential role of (retinal) PCs in regeneration and wound healing will be discussed.
Subject(s)
Pericytes/cytology , Retina/cytology , Animals , Blood-Retinal Barrier , Capillaries/cytology , Diabetic Retinopathy/pathology , Humans , Regeneration , Retinopathy of Prematurity/pathology , Wound HealingABSTRACT
Aquaporins (AQPs) are important for ocular homeostasis and function. While AQP expression has been investigated in ocular tissues of human, mouse, rat and dog, comprehensive data in rabbits are missing. As rabbits are frequently used model organisms in ophthalmic research, the aim of this study was to analyze mRNA expression and to localize AQPs in the rabbit eye. The results were compared with the data published for other species. In cross sections of New Zealand White rabbit eyes AQP0 to AQP5 were labeled by immunohistology and analyzed by confocal microscopy. Immunohistological findings were compared to mRNA expression levels, which were analyzed by quantitative reverse transcription real time polymerase chain reaction (qRT-PCR). The primers used were homologous against conserved regions of AQPs. In the rabbit eye, AQP0 protein expression was restricted to the lens, while AQP1 was present in the cornea, the chamber angle, the iris, the ciliary body, the retina and, to a lower extent, in optic nerve vessels. AQP3 and AQP5 showed immunopositivity in the cornea. AQP3 was also present in the conjunctiva, which could not be confirmed for AQP5. However, at a low level AQP5 was also traceable in the lens. AQP4 protein was detected in the ciliary non-pigmented epithelium (NPE), the retina, optic nerve astrocytes and extraocular muscle fibers. For most tissues the qRT-PCR data confirmed the immunohistology results and vice versa. Although species differences exist, the AQP protein expression pattern in the rabbit eye shows that, especially in the anterior section, the AQP distribution is very similar to human, mouse, rat and dog. Depending on the ocular regions investigated in rabbit, different protein and mRNA expression results were obtained. This might be caused by complex gene regulatory mechanisms, post-translational protein modifications or technical limitations. However, in conclusion the data suggest that the rabbit is a useful in-vivo model to study AQP function and the effects of direct and indirect intervention strategies to investigate e. g. mechanisms for intraocular pressure modulation or cornea transparency regulation.
Subject(s)
Aquaporins/metabolism , Eye/metabolism , Animals , Immunohistochemistry , Lens, Crystalline/metabolism , RNA, Messenger/metabolism , Rabbits , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
Tendons lack sufficient blood supply and represent a bradytroph tissue with prolonged healing time under pathological conditions. While the role of lymphatics in wound/defect healing in tissues with regular blood supply is well investigated, its involvement in tendon defects is not clear. We here try to identify the role of the lymphatic system in a tendon lesion model with morphological methods. A rat Achilles tendon lesion model (n = 5) was created via surgical intervention. Two weeks after surgery, animals were killed and lesioned site removed and prepared for polarization microscopy (picrosirius red) and immunohistochemistry using the lymphatic markers PROX1, VEGFR3, CCL21, LYVE-1, PDPN, and the vascular marker CD31. Additionally, DAPI was applied. Untreated tendons served as controls, confocal laser-scanning microscopy was used for documentation. At the lesion site, polarization microscopy revealed a structural reintegration while immunohistochemistry detected band-like profiles immunoreactive for PDPN, VEGFR3, CCL21, LYVE1, and CD31, surrounding DAPI-positive nuclei. PROX1-positive nuclei were detected within the lesion forming lines and opposed to each other. These PROX1-positive nuclei were surrounded by LYVE-1- or VEGFR3-positive surfaces. Few CD31-positive profiles contained PROX1-positive nuclei, while the majority of CD31-positive profiles lacked PROX1-positive nuclei. VEGFR3-, PDPN-, and LYVE-1-positive profiles were numerous within the lesion site, but absent in control tissue. Within 2 weeks, a structural rearrangement takes place in this lesion model, with dense lymphatic supply. The role of lymphatics in tendon wound healing is unclear, and proposed model represents a good possibility to study healing dynamics and lymphangiogenesis in a tissue almost completely lacking lymphatics in physiological conditions.
Subject(s)
Achilles Tendon/pathology , Lymphangiogenesis , Lymphatic Vessels/pathology , Tendon Injuries/pathology , Wound Healing , Achilles Tendon/injuries , Achilles Tendon/metabolism , Achilles Tendon/surgery , Animals , Biomarkers/metabolism , Disease Models, Animal , Female , Immunohistochemistry , Lymphatic Vessels/metabolism , Microscopy, Confocal , Microscopy, Polarization , Rats, Inbred Lew , Tendon Injuries/metabolism , Time FactorsABSTRACT
Extrinsic and intrinsic sources of the autonomic nervous system contribute to choroidal innervation, thus being responsible for the control of choroidal blood flow, aqueous humor production or intraocular pressure. Neuropeptides are involved in this autonomic control, and amongst those, alarin has been recently introduced. While alarin is present in intrinsic choroidal neurons, it is not clear if these are the only source of neuronal alarin in the choroid. Therefore, we here screened for the presence of alarin in human cranial autonomic ganglia, and also in rat, a species lacking intrinsic choroidal innervation. Cranial autonomic ganglia (i.e., ciliary, CIL; pterygopalatine, PPG; superior cervical, SCG; trigeminal ganglion, TRI) of human and rat were prepared for immunohistochemistry against murine and human alarin, respectively. Additionally, double staining experiments for alarin and choline acetyltransferase (ChAT), tyrosine hydroxilase (TH), substance P (SP) were performed in human and rat ganglia for unequivocal identification of ganglia. For documentation, confocal laser scanning microscopy was used, while quantitative RT-PCR was applied to confirm immunohistochemical data and to detect alarin mRNA expression. In humans, alarin-like immunoreactivity (alarin-LI) was detected in intrinsic neurons and nerve fibers of the choroidal stroma, but was lacking in CIL, PPG, SCG and TRI. In rat, alarin-LI was detected in only a minority of cranial autonomic ganglia (CIL: 3.5%; PPG: 0.4%; SCG: 1.9%; TRI: 1%). qRT-PCR confirmed the low expression level of alarin mRNA in rat ganglia. Since alarin-LI was absent in human cranial autonomic ganglia, and only present in few neurons of rat cranial autonomic ganglia, we consider it of low impact in extrinsic ocular innervation in those species. Nevertheless, it seems important for intrinsic choroidal innervation in humans, where it could serve as intrinsic choroidal marker.
Subject(s)
Choroid/injuries , Galanin-Like Peptide/analysis , Ganglia, Autonomic/chemistry , RNA, Messenger/analysis , Aged , Animals , Female , Galanin-Like Peptide/genetics , Ganglia, Autonomic/cytology , Humans , Immunohistochemistry , Male , Microscopy, Confocal , Rats , Real-Time Polymerase Chain ReactionABSTRACT
The neuropeptide galanin (GAL) is widely distributed within intrinsic and extrinsic sources supplying the eye. It is involved in regulation of the vascular tone, thus important for ocular homeostasis. Since the presence/distribution of its receptors is unknown, we here screen for the presence of the various GAL receptors in the human eye. Meeting the Helsinki-Declaration, human eyes (n = 6; 45-83 years of age, of both sex, post mortem time 10-19 h) were obtained from the cornea bank and prepared for immunohistochemistry against GAL receptors 1-3 (GALR1-GALR3). Over-expressing cell assays served as positive controls and confocal laser-scanning microscopy was used for documentation. Cell assays reliably detected immunoreactivity for GALR1-3 and cross-reactions between antibodies used were not observed. In the cornea, GALR1-3 were detected in basal layers of the epithelium, stroma, endothelium, as well as in adjacent conjunctiva. In the iris, GALR1-3 were detected in iris sphincter and dilator, while iris vessels displayed immunoreactivity for GALR1 and GALR3. In the ciliary body, GALR1 was exclusively found in the non-pigmented epithelium while GALR3 was detected in the ciliary muscle and vessels. In the retina, GALR1 was present in fibers of the IPL, OPL, NFL, many cells of the INL and few cells of the ONL. GALR2 and GALR3 were present in few neurons of the INL, while GALR2 was also found surrounding retinal vessels. RPE displayed weak immunoreactivity for GALR2 but intense immunoreactivity for GALR3. In the choroid, GALR1-3 were detectable in intrinsic choroidal neurons and nerve fibers of the choroidal stroma, and all three receptors were detected surrounding choroidal blood vessels, while the choriocapillaris was immunoreactive for GALR3 only. This is the first report of the various GALRs in the human eye. While the presence of GALRs in cornea and conjunctiva might be relevant for wound healing or inflammatory processes, the detection in iris vessels (GALR1, 2) and choroidal vessels (GALR1-3) highlights the role of GAL in vessel dynamics. Presence of GALR1 in ciliary body epithelium and GALR3 in ciliary vessels indicates involvement in aqueous humor production, whereas retinal GALR distribution might contribute to signal transduction.
Subject(s)
Blood Vessels/metabolism , Choroid/blood supply , Eye/metabolism , Iris/blood supply , Receptors, Galanin/metabolism , Aged , Aged, 80 and over , Cell Line , Ciliary Body/metabolism , Conjunctiva/metabolism , Cornea/metabolism , Female , Humans , Immunohistochemistry , Male , Middle Aged , Muscle, Smooth/metabolism , Retina/metabolismABSTRACT
A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 µm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated.
Subject(s)
Oxygen Isotopes/analysis , Spectrum Analysis/methods , Water/analysis , Algorithms , Deuterium/analysis , Equipment Design , Image Processing, Computer-Assisted , Lasers , Spectrum Analysis/instrumentation , Water/chemistryABSTRACT
Kalman adaptive filtering was applied for the first time, to our knowledge, to the real-time simultaneous determination of water isotopic ratios using laser absorption spectroscopy at 2.73 microm. Measurements of the oxygen and hydrogen isotopologue ratios delta(18)O, delta(17)O, and delta(2)H in water showed a 1-sigma precision of 0.72 per thousand for delta(18)O, 0.48 per thousand for delta(17)O, and 0.84 per thousand for delta(2)H, while sampling the output of the tuned Kalman filter at 1 s time intervals. Using a standard running average technique, averaging over approximately 30 s is required to obtain the same level of precision.
ABSTRACT
The retinal pigment epithelium (RPE), which is among the tissues in the body that are exposed to the highest levels of phagocytosis and oxidative stress, is dependent on autophagy function. Impaired autophagy and continuous cellular stress are associated with various disorders, such as dry age-related macular degeneration (AMD), a disease for which effective therapies are lacking. Cysteinyl leukotriene receptor (CysLTR) 1 is a potential modulator of autophagy; thus, the aim of this study was to investigate the role of CysLTR1 in autophagy regulation in the RPE cell line ARPE-19. The polarized ARPE-19 monolayer exhibited expression of CysLTR1, which was colocalized with ß-tubulin III. In ARPE-19 cells, autophagic activity was rhythmically regulated and was increased upon CysLTR1 inhibition by Zafirlukast (ZK) treatment. H2O2 affected the proautophagic regulatory effect of ZK treatment depending on whether it was applied simultaneously with or prior to ZK treatment. Furthermore, mRNA levels of genes related to the leukotriene system, autophagy and the unfolded protein response were positively correlated. As CysLTR1 is involved in autophagy regulation under basal and oxidative stress conditions, a dysfunctional leukotriene system could negatively affect RPE functions. Therefore, CysLTR1 is a potential target for new treatment approaches for neurodegenerative disorders, such as AMD.
Subject(s)
Autophagy , Receptors, Leukotriene/metabolism , Retinal Pigment Epithelium/metabolism , Cell Line , Fluorescent Antibody Technique , Gene Expression Regulation , Humans , Hydrogen Peroxide/metabolism , Indoles , Leukotriene Antagonists/pharmacology , Oxidative Stress , Phenylcarbamates , Polymerase Chain Reaction , Receptors, Leukotriene/drug effects , Receptors, Leukotriene/physiology , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/physiology , Sulfonamides , Tosyl Compounds/pharmacology , Transcription Factors/metabolismABSTRACT
Purpose: Episcleral venous pressure (EVP) greatly influences steady-state IOP and recent evidence suggests a neuronal influence on EVP. Yet little is known about the innervation of the episcleral circulation and, more specifically, the neurotransmitters involved. We identify possible neurotransmitter candidates in the episcleral circulation of rats. Methods: Eight immersion-fixated rat eyes taken from four animals were cut into serial sections, followed by standard immunohistochemistry. Antibodies against choline acetyltransferase, dopamine-ß-hydroxylase, synaptophysine, PGP 9.5, VIP, neuronal nitric oxide synthase (nNOS), substance P, CGRP, and galanin were used. Additionally, colocalization experiments with smooth muscle actin and neurofilament (200 kDa) were performed. Results: In all specimens, the episcleral vessels showed immunoreactivity for smooth muscle actin and were reached by neurofilament (200 kDa)-positive structures. Furthermore, these structures colocalized with immunoreactivity for PGP 9.5, synaptophysine, choline acetyl transferase (ChAT), dopamine-ß-hydroxylase, VIP, CGRP, nNOS, substance P and galanin. Conclusions: These findings indicate that there is neuronal input to the episcleral circulation. ChAT and VIP as well as dopamine-ß-hydroxylase suggest parasympathetic and sympathetic innervation. Further studies are needed on whether the positively-stained structures are of functional significance for the regulation of the episcleral venous pressure and thereby IOP.
Subject(s)
Immunohistochemistry/methods , Neurons/metabolism , Neurotransmitter Agents/blood , Sclera/blood supply , Venous Pressure/physiology , Animals , Models, Animal , Rats , Rats, Sprague-DawleyABSTRACT
Purpose/aim of the study: In the retina, defects in pericytes (PCs) function/loss are associated with various complications; however, the exact pathological mechanisms are still not fully elucidated. Following the behavior of retina-resident PCs during health and disease will reveal new insights for both the understanding of pathological mechanisms and the development of new regenerative therapies for the treatment of retinopathies. The main goal of this study is to determine whether the NG2-reporter mouse (NG2CreERTM-eGFP) is a suitable model to study the fate of retina-resident PCs. MATERIAL AND METHODS: Vascular development-dependent reporter induction in retinal PCs was evaluated at different time points [(a) > P21, (b) < P21, and (c) P1 to > P21)] and additionally four different modes of application were tested. Reporter expression was evaluated by enhanced green fluorescent protein (eGFP) immunofluorescence by confocal microscopy and induction efficiency was calculated by analyzing NG2-expressing PCs in comparison to eGFP-labeled PCs in the three capillary layers. RESULTS: eGFP-positive PCs were detected in the three retinal capillary layers at all time points and administration routes tested. Multiple tamoxifen (TAM) applications in adult (> P21) NG2CreERTM-eGFP mice resulted in 3.59% eGFP-positive PCs. 2.37% eGFP-labeled PCs were detected after single intraperitoneal TAM injections at early postnatal days (P2/P5); however, just 1.61% PCs revealed reporter expression upon activation via the lactating mother (P4-P7). The highest number of eGFP-labeled PCs (7.09%) was detected following triple TAM administrations (P10-P12). The number of reporter-positive PCs doubled using homozygous animals. CONCLUSION: Despite low recombination efficiency in the used PC-specific fate mapping mouse model, changes in NG2 promoter activity of PCs during vascular development are indicated by single and multiple TAM inductions at different developmental time points. Nevertheless, these findings need further confirmation in up-coming studies by using homozygous NG2CreERTM-eGFP mice and additionally by mating the NG2CreERTM with a different reporter mouse to increase the low recombination efficiency.
Subject(s)
Antigens/metabolism , Green Fluorescent Proteins/metabolism , Pericytes/cytology , Proteoglycans/metabolism , Retinal Vessels/growth & development , Animals , Capillaries/growth & development , Capillaries/metabolism , Cell Differentiation , Female , Genes, Reporter , Injections, Intraperitoneal , Injections, Subcutaneous , Mice , Mice, Transgenic , Microscopy, Confocal , Microscopy, Fluorescence , Models, Animal , Pericytes/metabolism , Retinal Vessels/metabolism , Selective Estrogen Receptor Modulators/administration & dosage , Tamoxifen/administration & dosage , Time FactorsABSTRACT
Galanin (GAL) is a neuro-regulatory peptide involved in many physiological and pathophysiological processes. While data of GAL origin/distribution in the human eye are rather fragmentary and since recently the presence of GAL-receptors in the normal human eye has been reported, we here systematically search for sources of ocular GAL in the human eye. Human eyes (n=14) were prepared for single- and double-immunohistochemistry of GAL and neurofilaments (NF). Cross- and flat-mount sections were achieved; confocal laser-scanning microscopy was used for documentation. In the anterior eye, GAL-immunoreactivity (GAL-IR) was detected in basal layers of corneal epithelium, endothelium, and in nerve fibers and keratinocytes of the corneal stroma. In the conjunctiva, GAL-IR was seen throughout all epithelial cell layers. In the iris, sphincter and dilator muscle and endothelium of iris vessels displayed GAL-IR. It was also detected in stromal cells containing melanin granules, while these were absent in others. In the ciliary body, ciliary muscle and pigmented as well as non-pigmented ciliary epithelium displayed GAL-IR. In the retina, GAL-IR was detected in cells associated with the ganglion cell layer, and in endothelial cells of retinal blood vessels. In the choroid, nerve fibers of the choroidal stroma as well as fibers forming boutons and surrounding choroidal blood vessels displayed GAL-IR. Further, the majority of intrinsic choroidal neurons were GAL-positive, as revealed by co-localization-experiments with NF, while a minority displayed NF- or GAL-IR only. GAL-IR was also detected in choroidal melanocytes, as identified by the presence of intracellular melanin-granules, as well as in cells lacking melanin-granules, most likely representing macrophages. GAL-IR was detected in numerous cells and tissues throughout the anterior and posterior eye and might therefore be an important regulatory peptide for many aspects of ocular control. Upcoming studies in diseased tissue will help to clarify the role of GAL in ocular homeostasis.
Subject(s)
Eye/metabolism , Galanin/metabolism , Neurons/metabolism , Humans , Immunohistochemistry/methods , Muscle, Smooth/metabolism , Nerve Fibers/metabolism , Receptors, Galanin/metabolismABSTRACT
BMI1 is a core component of the polycomb repressive complex 1 (PRC1) and is up-regulated in biliary tract cancer (BTC), contributing to aggressive clinical features. In this study we investigated the cytotoxic effects of PTC-209, a recently developed inhibitor of BMI1, in BTC cells. PTC-209 reduced overall viability in BTC cell lines in a dose-dependent fashion (0.04 - 20 µM). Treatment with PTC-209 led to slightly enhanced caspase activity and stop of cell proliferation. Cell cycle analysis revealed that PTC-209 caused cell cycle arrest at the G1/S checkpoint. A comprehensive investigation of expression changes of cell cycle-related genes showed that PTC-209 caused significant down-regulation of cell cycle-promoting genes as well as of genes that contribute to DNA synthesis initiation and DNA repair, respectively. This was accompanied by significantly elevated mRNA levels of cell cycle inhibitors. In addition, PTC-209 reduced sphere formation and, in a cell line-dependent manner, aldehyde dehydrogease-1 positive cells. We conclude that PTC-209 might be a promising drug for future in vitro and in vivo studies in BTC.
Subject(s)
Cell Proliferation/drug effects , Heterocyclic Compounds, 2-Ring/pharmacology , Polycomb Repressive Complex 1/antagonists & inhibitors , Thiazoles/pharmacology , Antineoplastic Agents/pharmacology , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/metabolism , Biliary Tract Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cisplatin/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Flow Cytometry , G1 Phase Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunohistochemistry , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
Pericytes are specialized mural cells located at the abluminal surface of capillary blood vessels, embedded within the basement membrane. In the vascular network these multifunctional cells fulfil diverse functions, which are indispensable for proper homoeostasis. They serve as microvascular stabilizers, are potential regulators of microvascular blood flow and have a central role in angiogenesis, as they for example regulate endothelial cell proliferation. Furthermore, pericytes, as part of the neurovascular unit, are a major component of the blood-retina/brain barrier. CNS pericytes are a heterogenic cell population derived from mesodermal and neuro-ectodermal germ layers acting as modulators of stromal and niche environmental properties. In addition, they display multipotent differentiation potential making them an intriguing target for regenerative therapies. Pericyte-deficiencies can be cause or consequence of many kinds of diseases. In diabetes, for instance, pericyte-loss is a severe pathological process in diabetic retinopathy (DR) with detrimental consequences for eye sight in millions of patients. In this review, we provide an overview of our current understanding of CNS pericyte origin and function, with a special focus on the retina in the healthy and diseased. Finally, we highlight the role of pericytes in de- and regenerative processes.
ABSTRACT
PURPOSE: Reports of lymphatics in the posterior human uvea are contradictory. We systematically analyzed the choroid by combining various lymphatic markers, following recently established guidelines for the immunohistochemical detection of ocular lymphatics. METHODS: Human choroids were prepared for flat mount serial cryosectioning. Sections were processed for immunohistochemistry of the lymphatic markers LYVE-1, PDPN, PROX1, FOXC2, VEGFR3, CCL21, and combined with α-smooth muscle-actin and 4',6-diamidino-2-phenylendole (DAPI). Single, double, and triple marker combinations were documented using confocal microscopy. Messenger RNA analysis for CCL21, FOXC2, LYVE-1, PDPN, PROX, and VEGFR3 was performed in choroid and skin. RESULTS: In the choroid, CCL21 immunoreactivity was detected in choroidal blood vessels, intrinsic choroidal neurons, and numerous small cells of the choroidal stroma. These small cells were not colocalized with PROX1 and PDPN, while a subpopulation of cells showed immunoreactivity for CCL21 and LYVE-1, and very occasionally PDPN-only+ cells were detected. Nuclei positive for PROX1 were never detected in the choroid, and vessel-like structures immunoreactive for LYVE-1, PDPN, or CCL21 (other than blood vessels) were never observed. Immunoreactivity of VEGFR3 was absent in the majority of choroidal blood vessels, but present in choriocapillaris, while other structures positive for VEGFR3 were not detected. Nonvascular smooth muscle cells were lacking VEGFR3-immunoreactivity. Messenger RNA analysis detected all lymphatic markers investigated and confirmed immunohistochemical results. CONCLUSIONS: By combining several lymphatic markers, single cells expressed these markers, but classical lymphatic vessels were not detected in the human choroid. Therefore, the healthy adult human choroid must be considered alymphatic, at least with the markers applied here.
Subject(s)
Choroid/metabolism , Lymphatic Vessels/metabolism , Membrane Glycoproteins/metabolism , Aged , Biomarkers , Cells, Cultured , Choroid/ultrastructure , Female , Gene Expression Regulation , Humans , Immunohistochemistry , Lymphatic Vessels/ultrastructure , Male , Membrane Glycoproteins/genetics , Microscopy, Confocal , Microscopy, Immunoelectron , Middle Aged , RNA, Messenger/geneticsABSTRACT
The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII,COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex- and age-matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls.
Subject(s)
Aging/physiology , Epidermolysis Bullosa/pathology , Skin/ultrastructure , Transcriptome/physiology , Adolescent , Adult , Aged , Female , Gene Expression Regulation/physiology , Humans , Male , Middle Aged , Skin/pathology , Skin Physiological PhenomenaABSTRACT
PURPOSE: Reports of lymphatics in the anterior human uvea are contradictory. This might be caused due to a certain topography, which has not been considered yet. Therefore, here we systematically analyze iris and adjacent ciliary body with immunohistochemistry by combining various lymphatic markers. METHODS: Human iris and ciliary body were obtained from cornea donors and prepared for cryosectioning. Cross sections of tissue blocks at 12/3/6/9 o'clock position and at corresponding intersections (1:30/4:30/7:30/10:30) were processed for immunohistochemistry of LYVE-1, PDPN, PROX1, FOXC2, VEGFR3, and CCL21, and when necessary, these lymphatic markers were combined with CD31, α-smooth muscle-actin, CD68, and 4',6-diamidino-2 phenylindole dihydrochloride (DAPI). Double, triple, and quadruple marker combinations were documented using confocal microscopy. RESULTS: Numerous podoplanin+ cells were mainly located at the anterior border of the iris while LYVE-1+ cells were distributed throughout the nonpigmented part. Both cell populations were PROX1/FOXC2/CCL21/VEGFR3-. Blood vessels, iris smooth muscles, and individual cells were VEGFR3+. While PDPN+ cells were rarely detected posteriorly of the iris root, many LYVE-1+ cells were present within the ciliary body muscle and villi. Within the muscle, occasionally PDPN+ vessel-like structures were detectable, but these were never colocalized with LYVE-1. Similar vessel-like structures were VEGFR3+/PROX1-/CCL21-, but CD31+. Further, ciliary muscle fibers and ciliary epithelium were immunoreactive for VEGFR3/CCL21, but were LYVE-1/PDPN-. A certain topography of structures at the various uvea-positions investigated was not obvious. The majority of LYVE-1+ cells displayed immunoreactivity for CD68. CONCLUSIONS: Lymphatic vessels colocalizing for at least two lymphatic markers were not detectable. Therefore, if present, putative lymphatic channels of the anterior uvea might display a different marker panel than generally presumed.
Subject(s)
Ciliary Body/blood supply , Iris/blood supply , Lymphatic Vessels/pathology , Aged , Ciliary Body/metabolism , Corneal Diseases/metabolism , Corneal Diseases/pathology , Endothelium, Lymphatic/metabolism , Endothelium, Lymphatic/pathology , Female , Humans , Immunohistochemistry , Iris/metabolism , Lymphatic Vessels/metabolism , Male , Membrane Glycoproteins , Microscopy, Confocal , Microscopy, Immunoelectron , Middle AgedABSTRACT
In adolescence, the circadian preference shifts toward eveningness orientation. Eveningness seems to be negatively correlated with quality of life. The present study investigates influencing factors of this association and proposes a model for the mediating effects of sleep, sleep-related cognitions, and self-efficacy according to chronotype. The sample comprised N = 280 adolescents (172 girls) aged 14-16 yrs (mean = 15.19, SD = .76). Circadian preference, health-related quality of life (HRQoL), sleep disturbances, sleep-related dysfunctional cognitions, and general perceived self-efficacy were assessed online. Morning-orientated adolescents reported significantly higher HRQoL and less insomnia symptoms compared with evening-oriented chronotypes. In the total sample, insomnia symptoms mediated the relationship of chronotype and HRQoL. The strongest predictor of HRQoL in evening types was the degree of sleep-related dysfunctional cognitions. HRQoL in morning types was most strongly predicted by general self-efficacy, i.e., the global confidence in coping abilities. The findings support a negative relationship of eveningness and HRQoL in adolescents. Insomnia symptoms were identified to be mediating factors in this relationship. The influence of the mediating factors on HRQoL differed between morning and evening types. The model provides implications of how to enhance HRQoL in adolescents according to their circadian preference.