Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nephrol Dial Transplant ; 38(12): 2809-2815, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37230949

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is associated with atherosclerotic cardiovascular disease (ASCVD) risk, especially among those with diabetes. Altered metabolism of solutes that accumulate in CKD [asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and trimethylamine N-oxide (TMAO)] may reflect pathways linking CKD with ASCVD. METHODS: This case-cohort study included Chronic Renal Insufficiency Cohort participants with baseline diabetes, estimated glomerular filtration rate <60 mL/min/1.73 m2, and without prior history for each outcome. The primary outcome was incident ASCVD (time to first myocardial infarction, stroke or peripheral artery disease event) and secondary outcome was incident heart failure. The subcohort comprised randomly selected participants meeting entry criteria. Plasma and urine ADMA, SDMA and TMAO concentrations were determined by liquid chromatography-tandem mass spectrometry. Associations of uremic solute plasma concentrations and urinary fractional excretions with outcomes were evaluated by weighted multivariable Cox regression models, adjusted for confounding covariables. RESULTS: Higher plasma ADMA concentrations (per standard deviation) were associated with ASCVD risk [hazard ratio (HR) 1.30, 95% confidence interval (CI) 1.01-1.68]. Lower fractional excretion of ADMA (per standard deviation) was associated with ASCVD risk (HR 1.42, 95% CI 1.07-1.89). The lowest quartile of ADMA fractional excretion was associated with greater ASCVD risk (HR 2.25, 95% CI 1.08-4.69) compared with the highest quartile. Plasma SDMA and TMAO concentration and fractional excretion were not associated with ASCVD. Neither plasma nor fractional excretion of ADMA, SDMA and TMAO were associated with incident heart failure. CONCLUSION: These data suggest that decreased kidney excretion of ADMA leads to increased plasma concentrations and ASCVD risk.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Diabetes Mellitus , Diabetic Nephropathies , Heart Failure , Renal Insufficiency, Chronic , Humans , Cohort Studies , Diabetic Nephropathies/complications , Arginine , Renal Insufficiency, Chronic/complications , Heart Failure/complications , Atherosclerosis/etiology , Atherosclerosis/complications , Biomarkers
2.
Artif Organs ; 47(2): 290-301, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36305734

ABSTRACT

PURPOSE: There are no established criteria for discontinuing ex vivo normothermic limb perfusion (EVNLP) before irreversible damage occurs. This study evaluates weight gain as an indicator of injury during EVNLP. METHODS: Sixteen Yorkshire pig forelimbs were procured and preserved using EVNLP with a hemoglobin-based oxygen carrier (HBOC-201) or static cold storage. EVNLP continued until termination criteria were met: arterial pressure ≥ 115 mm Hg, compartment pressure > 30 mm Hg, or 20% reduction of oxygen saturation. Limb weight, contractility, hemodynamics, perfusate electrolytes, metabolites and gases were recorded. Muscles were biopsied 6-h, and muscle injury scores (MIS) calculated. Forearm compartment pressures and indocyanine green (ICG) angiography were recorded at endpoint. Outcomes were compared at 2%, 5%, 10%, and 20% limb weight gain. RESULTS: EVNLP lasted 20 ± 3 h. Weight gain was observed after 13 ± 5 h (2%), 15 ± 6 h (5%), 16 ± 6 h (10%), and 19 ± 4 h (20%). Weight correlated positively with MIS (ρ = 0.92, p < 0.0001), potassium (ρ = -1.00, p < 0.0001), pressure (ρ = 0.78, p < 0.0001), and negatively with contractility (ρ = -0.96, p = 0.011). At 5% weight gain, MIS (p < 0.0001), potassium (p = 0.03), and lactate (p < 0.0001) were significantly higher than baseline. Median muscle contractility was 5 [3-5] at 2% weight gain, 4 [1-5] at 5%, 3 [0-4] and 2 [0-2] at 10% and 20%, respectively. At 20% weight gain, contractility was significantly lower than baseline (p = 0.003). Percent weight gain correlated negatively with endpoint ICG hoof fluorescence (r = -0.712, p = 0.047). CONCLUSIONS: Weight gain correlated with microscopic muscle injury and was the earliest evidence of limb dysfunction. Weight gain may serve as a criterion for discontinuation of EVNLP.


Subject(s)
Extracorporeal Circulation , Extremities , Animals , Swine , Perfusion/adverse effects , Forelimb , Potassium , Organ Preservation
3.
Am J Kidney Dis ; 80(4): 502-512.e1, 2022 10.
Article in English | MEDLINE | ID: mdl-35351578

ABSTRACT

RATIONALE & OBJECTIVE: Cardiovascular disease (CVD) is a major cause of mortality among people with diabetic kidney disease (DKD). The pathophysiology is inadequately explained by traditional CVD risk factors. The uremic solutes trimethylamine-N-oxide (TMAO) and asymmetric and symmetric dimethylarginine (ADMA, SDMA) have been linked to CVD in kidney failure with replacement therapy (KFRT), but data are limited in populations with diabetes and less severe kidney disease. STUDY DESIGN: Observational cohort. SETTINGS & PARTICIPANTS: Random subcohort of 555 REGARDS (Reasons for Geographic and Racial Differences in Stroke) study participants with diabetes and estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 at study entry. EXPOSURE: ADMA, SDMA, and TMAO assayed by liquid chromatography-mass spectrometry in plasma and urine. OUTCOME: Cardiovascular mortality (primary outcome); all-cause mortality and incident KFRT (secondary outcomes). ANALYTICAL APPROACH: Plasma concentrations and ratios of urine to plasma concentrations of ADMA, SDMA, and TMAO were tested for association with outcomes. Adjusted Cox regression models were fitted and hazard ratios of outcomes calculated per standard deviation and per doubling, and as interquartile comparisons. RESULTS: The mean baseline eGFR was 44 mL/min/1.73 m2. Cardiovascular death, overall mortality, and KFRT occurred in 120, 285, and 89 participants, respectively, during a mean 6.2 years of follow-up. Higher plasma ADMA and SDMA (HRs of 1.20 and 1.28 per 1-SD greater concentration), and lower ratios of urine to plasma concentrations of ADMA, SDMA, and TMAO (HRs per halving of 1.53, 1.69, and 1.38) were associated with cardiovascular mortality. Higher plasma concentrations of ADMA, SDMA, and TMAO (HRs of 1.31, 1.42, and 1.13 per 1-SD greater concentration) and lower urine to plasma ratios of ADMA, SDMA, and TMAO (HRs per halving of 1.34, 1.37, and 1.26) were associated with all-cause mortality. Higher plasma ADMA and SDMA were associated with incident KFRT by categorical comparisons (HRs of 2.75 and 2.96, comparing quartile 4 to quartile 1), but not in continuous analyses. LIMITATIONS: Single cohort, restricted to patients with diabetes and eGFR < 60 mL/min/1.73 m2, potential residual confounding by GFR, no dietary information. CONCLUSIONS: Higher plasma concentrations and lower ratios of urine to plasma concentrations of uremic solutes were independently associated with cardiovascular and all-cause mortality in DKD. Associations of ratios of urine to plasma concentrations with mortality suggest a connection between renal uremic solute clearance and CVD pathogenesis.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Diabetic Nephropathies , Arginine , Biomarkers , Diabetic Nephropathies/complications , Humans , Methylamines , Oxides
4.
Int J Mol Sci ; 22(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34948286

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is commonly used as a plasticizer in various industrial and household plastic products, ensuring widespread human exposures. Its routine detection in human bio-fluids and the propensity of its monoester metabolite to activate peroxisome proliferator activated receptor-α (PPARα) and perturb lipid metabolism implicate it as a metabolic disrupter. In this study we evaluated the effects of DEHP exposure on hepatic levels of free CoA and various CoA esters, while also confirming the metabolic activation to CoA esters and partial ß-oxidation of a DEHP metabolite (2-ethyhexanol). Male Wistar rats were exposed via diet to 2% (w/w) DEHP for fourteen-days, following which hepatic levels of free CoA and various CoA esters were identified using liquid chromatography-mass spectrometry. DEHP exposed rats showed significantly elevated free CoA and increased levels of physiological, DEHP-derived and unidentified CoA esters. The physiological CoA ester of malonyl-CoA and DEHP-derived CoA ester of 3-keto-2-ethylhexanoyl-CoA were the most highly elevated, at eighteen- and ninety eight-times respectively. We also detected sixteen unidentified CoA esters which may be derivative of DEHP metabolism or induction of other intermediary metabolism metabolites. Our results demonstrate that DEHP is a metabolic disrupter which affects production and sequestration of CoA, an essential cofactor of oxidative and biosynthetic reactions.


Subject(s)
Coenzyme A/metabolism , Diethylhexyl Phthalate/metabolism , Liver/metabolism , Phthalic Acids/metabolism , Animals , Lipid Metabolism/physiology , Male , Oxidation-Reduction , PPAR alpha/metabolism , Plasticizers/metabolism , Rats , Rats, Wistar
5.
Am J Physiol Endocrinol Metab ; 315(4): E622-E633, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30016154

ABSTRACT

High concentrations of propionate and its metabolites are found in several diseases that are often associated with the development of cardiac dysfunction, such as obesity, diabetes, propionic acidemia, and methylmalonic acidemia. In the present work, we employed a stable isotope-based metabolic flux approach to understand propionate-mediated perturbation of cardiac energy metabolism. Propionate led to accumulation of propionyl-CoA (increased by ~101-fold) and methylmalonyl-CoA (increased by 36-fold). This accumulation caused significant mitochondrial CoA trapping and inhibited fatty acid oxidation. The reduced energy contribution from fatty acid oxidation was associated with increased glucose oxidation. The enhanced anaplerosis of propionate and CoA trapping altered the pool sizes of tricarboxylic acid cycle (TCA) metabolites. In addition to being an anaplerotic substrate, the accumulation of proprionate-derived malate increased the recycling of malate to pyruvate and acetyl-CoA, which can enter the TCA for energy production. Supplementation of 3 mM l-carnitine did not relieve CoA trapping and did not reverse the propionate-mediated fuel switch. This is due to new findings that the heart appears to lack the specific enzyme catalyzing the conversion of short-chain (C3 and C4) dicarboxylyl-CoAs to dicarboxylylcarnitines. The discovery of this work warrants further investigation on the relevance of dicarboxylylcarnitines, especially C3 and C4 dicarboxylylcarnitines, in cardiac conditions such as heart failure.


Subject(s)
Carnitine/pharmacology , Coenzyme A/metabolism , Energy Metabolism/drug effects , Heart/drug effects , Myocardium/metabolism , Propionates/metabolism , Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/metabolism , Animals , Citric Acid Cycle/drug effects , Citric Acid Cycle/physiology , Energy Metabolism/physiology , Fatty Acids/metabolism , Glucose/metabolism , Isolated Heart Preparation , Liver/metabolism , Malates/metabolism , Male , Metabolic Flux Analysis , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Oxidation-Reduction/drug effects , Pyruvic Acid/metabolism , Rats
6.
Circ Res ; 118(10): 1659-701, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27012580

ABSTRACT

In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.


Subject(s)
American Heart Association , Cardiac Imaging Techniques/methods , Cardiovascular Diseases/metabolism , Computational Biology/methods , Myocardium/metabolism , Animals , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/genetics , Humans , United States
7.
Am J Physiol Endocrinol Metab ; 313(4): E413-E428, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28634175

ABSTRACT

Propionate, 3-hydroxypropionate (3HP), methylcitrate, related compounds, and ammonium accumulate in body fluids of patients with disorders of propionyl-CoA metabolism, such as propionic acidemia. Although liver transplantation alleviates hyperammonemia, high concentrations of propionate, 3HP, and methylcitrate persist in body fluids. We hypothesized that conserved metabolic perturbations occurring in transplanted patients result from the simultaneous presence of propionate and 3HP in body fluids. We investigated the inter-relations of propionate and 3HP metabolism in perfused livers from normal rats using metabolomic and stable isotopic technologies. In the presence of propionate, 3HP, or both, we observed the following metabolic perturbations. First, the citric acid cycle (CAC) is overloaded but does not provide sufficient reducing equivalents to the respiratory chain to maintain the homeostasis of adenine nucleotides. Second, there is major CoA trapping in the propionyl-CoA pathway and a tripling of liver total CoA within 1 h. Third, liver proteolysis is stimulated. Fourth, propionate inhibits the conversion of 3HP to acetyl-CoA and its oxidation in the CAC. Fifth, some propionate and some 3HP are converted to nephrotoxic maleate by different processes. Our data have implications for the clinical management of propionic acidemia. They also emphasize the perturbations of the liver intermediary metabolism induced by supraphysiological, i.e., millimolar, concentrations of labeled propionate used to trace the intermediary metabolism, in particular, inhibition of CAC flux and major decreases in the [ATP]/[ADP] and [ATP]/[AMP] ratios.


Subject(s)
Acyl Coenzyme A/metabolism , Lactic Acid/analogs & derivatives , Liver/metabolism , Propionates/metabolism , Ammonium Compounds/metabolism , Animals , Carbon Isotopes , Citrates/metabolism , Citric Acid Cycle , Lactic Acid/metabolism , Liver Transplantation , Male , Oxidation-Reduction , Propionic Acidemia/metabolism , Propionic Acidemia/surgery , Proteolysis , Rats , Rats, Sprague-Dawley
8.
Proc Natl Acad Sci U S A ; 111(52): 18572-7, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25512491

ABSTRACT

Coenzyme A (CoA) mediates thiol-based acyl-group transfer (acetylation and palmitoylation). However, a role for CoA in the thiol-based transfer of NO groups (S-nitrosylation) has not been considered. Here we describe protein S-nitrosylation in yeast (heretofore unknown) that is mediated by S-nitroso-CoA (SNO-CoA). We identify a specific SNO-CoA reductase encoded by the alcohol dehydrogenase 6 (ADH6) gene and show that deletion of ADH6 increases cellular S-nitrosylation and alters CoA metabolism. Further, we report that Adh6, acting as a selective SNO-CoA reductase, protects acetoacetyl-CoA thiolase from inhibitory S-nitrosylation and thereby affects sterol biosynthesis. Thus, Adh6-regulated, SNO-CoA-mediated protein S-nitrosylation provides a regulatory mechanism paralleling protein acetylation. We also find that SNO-CoA reductases are present from bacteria to mammals, and we identify aldo-keto reductase 1A1 as the mammalian functional analog of Adh6. Our studies reveal a novel functional class of enzymes that regulate protein S-nitrosylation from yeast to mammals and suggest that SNO-CoA-mediated S-nitrosylation may subserve metabolic regulation.


Subject(s)
Acetyl-CoA C-Acetyltransferase/metabolism , Acyl Coenzyme A/metabolism , Alcohol Dehydrogenase/metabolism , Coenzyme A/metabolism , Protein Processing, Post-Translational/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Acetyl-CoA C-Acetyltransferase/genetics , Acyl Coenzyme A/genetics , Alcohol Dehydrogenase/genetics , Animals , Cattle , Coenzyme A/genetics , Gene Deletion , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
9.
J Lipid Res ; 57(2): 258-64, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26630912

ABSTRACT

The retina, a thin tissue in the back of the eye, has two apparent sources of cholesterol: in situ biosynthesis and cholesterol available from the systemic circulation. The quantitative contributions of these two cholesterol sources to the retinal cholesterol pool are unknown and have been determined in the present work. A new methodology was used. Mice were given separately deuterium-labeled drinking water and chow containing 0.3% deuterium-labeled cholesterol. In the retina, the rate of total cholesterol input was 21 µg of cholesterol/g retina • day, of which 15 µg of cholesterol/g retina • day was provided by local biosynthesis and 6 µg of cholesterol/g retina • day was uptaken from the systemic circulation. Thus, local cholesterol biosynthesis accounts for the majority (72%) of retinal cholesterol input. We also quantified cholesterol input to mouse brain, the organ sharing important similarities with the retina. The rate of total cerebral cholesterol input was 121 µg of cholesterol/g brain • day with local biosynthesis providing 97% of total cholesterol input. Our work addresses a long-standing question in eye research and adds new knowledge to the potential use of statins (drugs that inhibit cholesterol biosynthesis) as therapeutics for age-related macular degeneration, a common blinding disease.


Subject(s)
Cholesterol/biosynthesis , Macular Degeneration/metabolism , Retina/metabolism , Animals , Cholesterol/metabolism , Humans , Macular Degeneration/pathology , Macular Degeneration/therapy , Mice
10.
J Biol Chem ; 290(30): 18671-7, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26070565

ABSTRACT

We investigated the compartmentation of the catabolism of dodecanedioate (DODA), azelate, and glutarate in perfused rat livers, using a combination of metabolomics and mass isotopomer analyses. Livers were perfused with recirculating or nonrecirculating buffer containing one fully (13)C-labeled dicarboxylate. Information on the peroxisomal versus mitochondrial catabolism was gathered from the labeling patterns of acetyl-CoA proxies, i.e. total acetyl-CoA, the acetyl moiety of citrate, C-1 + 2 of ß-hydroxybutyrate, malonyl-CoA, and acetylcarnitine. Additional information was obtained from the labeling patterns of citric acid cycle intermediates and related compounds. The data characterize the partial oxidation of DODA and azelate in peroxisomes, with terminal oxidation in mitochondria. We did not find evidence of peroxisomal oxidation of glutarate. Unexpectedly, DODA contributes a substantial fraction to anaplerosis of the citric acid cycle. This opens the possibility to use water-soluble DODA in nutritional or pharmacological anaplerotic therapy when other anaplerotic substrates are impractical or contraindicated, e.g. in propionic acidemia and methylmalonic acidemia.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Dicarboxylic Acids/metabolism , Liver/metabolism , Metabolism, Inborn Errors/metabolism , Propionic Acidemia/metabolism , Amino Acid Metabolism, Inborn Errors/diet therapy , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/genetics , Animals , Citric Acid Cycle/genetics , Coenzyme A/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Glutarates/metabolism , Humans , Liver/pathology , Malonyl Coenzyme A/metabolism , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/genetics , Mitochondria/metabolism , Myocardium/metabolism , Myocardium/pathology , Oxidation-Reduction , Peroxisomes/metabolism , Propionic Acidemia/diet therapy , Propionic Acidemia/drug therapy , Propionic Acidemia/genetics , Rats
11.
J Biol Chem ; 290(13): 8121-32, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25645937

ABSTRACT

We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [(13)C2,(2)H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [(13)C6]glucose or [1,2-(13)C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-(13)C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA.


Subject(s)
Acetyl Coenzyme A/metabolism , Carnitine O-Acetyltransferase/metabolism , Myocardium/enzymology , Pyruvate Dehydrogenase Complex/metabolism , Animals , Carbon Isotopes/metabolism , Deuterium/metabolism , Glucose-6-Phosphate/metabolism , Glycolysis , In Vitro Techniques , Ketone Bodies/metabolism , Male , Rats, Sprague-Dawley , Tandem Mass Spectrometry
12.
HPB (Oxford) ; 18(12): 979-990, 2016 12.
Article in English | MEDLINE | ID: mdl-28340971

ABSTRACT

BACKGROUND: The incidence of liver disease is increasing in USA. Animal models had shown glutathione species in plasma reflects liver glutathione state and it could be a surrogate for the detection of hepatocellular carcinoma (HCC). METHODS: The present study aimed to translate methods to the human and to explore the role of glutathione/metabolic prints in the progression of liver dysfunction and in the detection of HCC. Treated plasma from healthy subjects (n = 20), patients with liver disease (ESLD, n = 99) and patients after transplantation (LTx, n = 7) were analyzed by GC- or LC/MS. Glutathione labeling profile was measured by isotopomer analyzes of 2H2O enriched plasma. Principal Component Analyzes (PCA) were used to determined metabolic prints. RESULTS: There was a significant difference in glutathione/metabolic profiles from patients with ESLD vs healthy subjects and patients after LTx. Similar significant differences were noted on patients with ESLD when stratified by the MELD score. PCA analyses showed myristic acid, citric acid, succinic acid, l-methionine, d-threitol, fumaric acid, pipecolic acid, isoleucine, hydroxy-butyrate and glycolic, steraric and hexanoic acids were discriminative metabolites for ESLD-HCC+ vs ESLD-HCC- subject status. CONCLUSIONS: Glutathione species and metabolic prints defined liver disease severity and may serve as surrogate for the detection of HCC in patients with established cirrhosis.


Subject(s)
Carcinoma, Hepatocellular/blood , End Stage Liver Disease/blood , Glutathione/blood , Liver Neoplasms/blood , Metabolomics/methods , Adult , Aged , Biomarkers, Tumor/blood , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/surgery , Case-Control Studies , Chromatography, Liquid , End Stage Liver Disease/diagnosis , End Stage Liver Disease/surgery , Female , Gas Chromatography-Mass Spectrometry , Humans , Least-Squares Analysis , Liver Neoplasms/diagnosis , Liver Neoplasms/surgery , Liver Transplantation , Male , Middle Aged , Multivariate Analysis , Predictive Value of Tests , Principal Component Analysis , Severity of Illness Index , Tandem Mass Spectrometry
13.
Mol Genet Metab ; 116(4): 260-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26547562

ABSTRACT

BACKGROUND: The treatment of long-chain mitochondrial ß-oxidation disorders (LC-FOD) with a low fat-high carbohydrate diet, a diet rich in medium-even-chain triglycerides (MCT), or a combination of both has been associated with high morbidity and mortality for decades. The pathological tableau appears to be caused by energy deficiency resulting from reduced availability of citric acid cycle (CAC) intermediates required for optimal oxidation of acetyl-CoA. This hypothesis was investigated by diet therapy with carnitine and anaplerotic triheptanoin (TH). METHODS: Fifty-two documented LC-FOD patients were studied in this investigation (age range: birth to 51 years). Safety monitoring included serial quantitative measurements of routine blood chemistries, blood levels of carnitine and acylcarnitines, and urinary organic acids. RESULTS: The average frequency of serious clinical complications were reduced from ~60% with conventional diet therapy to 10% with TH and carnitine treatment and mortality decreased from ~65% with conventional diet therapy to 3.8%. Carnitine supplementation was uncomplicated. CONCLUSION: The energy deficiency in LC-FOD patients was corrected safely and more effectively with the triheptanoin diet and carnitine supplement than with conventional diet therapy. Safe intervention in neonates and infants will permit earlier intervention following pre-natal diagnosis or diagnosis by expanded newborn screening.


Subject(s)
Carnitine/therapeutic use , Fatty Acids/metabolism , Lipid Metabolism, Inborn Errors/diet therapy , Mitochondrial Diseases/diet therapy , Triglycerides/therapeutic use , Administration, Oral , Adolescent , Adult , Carnitine/analogs & derivatives , Carnitine/blood , Child , Child, Preschool , Citric Acid/urine , Female , Humans , Infant , Infant, Newborn , Lactic Acid/urine , Lipid Metabolism, Inborn Errors/blood , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/mortality , Malates/urine , Male , Middle Aged , Mitochondrial Diseases/blood , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/mortality , Oxidation-Reduction , Succinic Acid/urine , Survival Analysis , Treatment Outcome
14.
J Biol Chem ; 288(41): 29267-80, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23970548

ABSTRACT

The benefits of antioxidant therapy for treating age-related macular degeneration, a devastating retinal disease, are limited. Perhaps species other than reactive oxygen intermediates should be considered as therapeutic targets. These could be lipid peroxidation products, including isolevuglandins (isoLGs), prototypical and extraordinarily reactive γ-ketoaldehydes that avidly bind to proteins, phospholipids, and DNA and modulate the properties of these biomolecules. We found isoLG adducts in aged human retina but not in the retina of mice kept under dim lighting. Hence, to test whether scavenging of isoLGs could complement or supplant antioxidant therapy, we exposed mice to bright light and found that this insult leads to retinal isoLG-adduct formation. We then pretreated mice with pyridoxamine, a B6 vitamer and efficient scavenger of γ-ketoaldehydes, and found that the levels of retinal isoLG adducts are decreased, and morphological changes in photoreceptor mitochondria are not as pronounced as in untreated animals. Our study demonstrates that preventing the damage to biomolecules by lipid peroxidation products, a novel concept in vision research, is a viable strategy to combat oxidative stress in the retina.


Subject(s)
Fatty Acids, Unsaturated/antagonists & inhibitors , Light , Pyridoxamine/pharmacology , Retina/drug effects , Retina/radiation effects , Aged , Animals , Eye/metabolism , Eye/ultrastructure , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Female , Humans , Immunohistochemistry , Macular Degeneration/metabolism , Macular Degeneration/prevention & control , Mice , Microscopy, Electron , Microscopy, Fluorescence , Pyridoxamine/blood , Pyridoxamine/metabolism , Retina/metabolism , Vitamin B Complex/blood , Vitamin B Complex/metabolism , Vitamin B Complex/pharmacology
15.
Am J Physiol Regul Integr Comp Physiol ; 304(10): R829-36, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23552496

ABSTRACT

Central nervous system oxygen toxicity (CNS-OT) seizures occur with little or no warning, and no effective mitigation strategy has been identified. Ketogenic diets (KD) elevate blood ketones and have successfully treated drug-resistant epilepsy. We hypothesized that a ketone ester given orally as R,S-1,3-butanediol acetoacetate diester (BD-AcAc(2)) would delay CNS-OT seizures in rats breathing hyperbaric oxygen (HBO(2)). Adult male rats (n = 60) were implanted with radiotelemetry units to measure electroencephalogram (EEG). One week postsurgery, rats were administered a single oral dose of BD-AcAc(2), 1,3-butanediol (BD), or water 30 min before being placed into a hyperbaric chamber and pressurized to 5 atmospheres absolute (ATA) O2. Latency to seizure (LS) was measured from the time maximum pressure was reached until the onset of increased EEG activity and tonic-clonic contractions. Blood was drawn at room pressure from an arterial catheter in an additional 18 animals that were administered the same compounds, and levels of glucose, pH, Po(2), Pco(2), ß-hydroxybutyrate (BHB), acetoacetate (AcAc), and acetone were analyzed. BD-AcAc(2) caused a rapid (30 min) and sustained (>4 h) elevation of BHB (>3 mM) and AcAc (>3 mM), which exceeded values reported with a KD or starvation. BD-AcAc(2) increased LS by 574 ± 116% compared with control (water) and was due to the effect of AcAc and acetone but not BHB. BD produced ketosis in rats by elevating BHB (>5 mM), but AcAc and acetone remained low or undetectable. BD did not increase LS. In conclusion, acute oral administration of BD-AcAc(2) produced sustained ketosis and significantly delayed CNS-OT seizures by elevating AcAc and acetone.


Subject(s)
Acetoacetates/therapeutic use , Brain/drug effects , Butylene Glycols/therapeutic use , Ketosis/chemically induced , Oxygen , Seizures/drug therapy , Acetoacetates/pharmacology , Animals , Blood Glucose , Brain/physiopathology , Butylene Glycols/pharmacology , Electroencephalography , Male , Rats , Rats, Sprague-Dawley , Seizures/physiopathology , Telemetry
16.
Chem Res Toxicol ; 26(2): 213-20, 2013 Feb 18.
Article in English | MEDLINE | ID: mdl-23171137

ABSTRACT

We recently reported that levulinate (4-ketopentanoate) is converted in the liver to 4-hydroxypentanoate, a drug of abuse, and that the formation of 4-hydroxypentanoate is stimulated by ethanol oxidation. We also identified 3 parallel ß-oxidation pathways by which levulinate and 4-hydroxypentanoate are catabolized to propionyl-CoA and acetyl-CoA. We now report that levulinate forms three seven-carbon cyclical CoA esters by processes starting with the elongation of levulinyl-CoA by acetyl-CoA to 3,6-diketoheptanoyl-CoA. The latter γ-diketo CoA ester undergoes two parallel cyclization processes. One process yields a mixture of tautomers, i.e., cyclopentenyl- and cyclopentadienyl-acyl-CoAs. The second cyclization process yields a methyl-pyrrolyl-acetyl-CoA containing a nitrogen atom derived from the ε-nitrogen of lysine but without carbons from lysine. The cyclic CoA esters were identified in rat livers perfused with levulinate and in livers and brains from rats gavaged with calcium levulinate ± ethanol. Lastly, 3,6-diketoheptanoyl-CoA, like 2,5-diketohexane, pyrrolates free lysine and, presumably, lysine residues from proteins. This may represent a new pathway for protein pyrrolation. The cyclic CoA esters and related pyrrolation processes may play a role in the toxic effects of 4-hydroxypentanoate.


Subject(s)
Coenzyme A/metabolism , Enzyme Inhibitors/metabolism , Levulinic Acids/metabolism , Prodrugs/metabolism , Animals , Brain/metabolism , Coenzyme A/chemistry , Cyclization , Enzyme Inhibitors/chemistry , Levulinic Acids/chemistry , Liver/metabolism , Male , Metabolomics , Prodrugs/chemistry , Rats , Rats, Sprague-Dawley
17.
Biochem J ; 444(2): 333-41, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22428548

ABSTRACT

GHB (γ-hydroxybutyrate) is both a neurotransmitter and a drug of abuse (date-rape drug). We investigated the catabolism of this compound in perfused rat livers. Using a combination of metabolomics and mass isotopomer analysis, we showed that GHB is metabolized by multiple processes, in addition to its previously reported metabolism in the citric acid cycle via oxidation to succinate. A substrate cycle operates between GHB and γ-aminobutyrate via succinic semialdehyde. Also, GHB undergoes (i) ß-oxidation to glycolyl-CoA+acetyl-CoA, (ii) two parallel processes which remove C-1 or C-4 of GHB and form 3-hydroxypropionate from C-2+C-3+C-4 or from C-1+C-2+C-3 of GHB, and (iii) degradation to acetyl-CoA via 4-phosphobutyryl-CoA. The present study illustrates the potential of the combination of metabolomics and mass isotopomer analysis for pathway discovery.


Subject(s)
Liver/metabolism , Perfusion , Sodium Oxybate/metabolism , Animals , Liver/enzymology , Perfusion/methods , Rats , Rats, Sprague-Dawley , Substrate Specificity
18.
Nat Commun ; 14(1): 3823, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380658

ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Administration, Cutaneous , Glucose , Pancreatic Neoplasms
19.
J Biol Chem ; 286(27): 23631-5, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21566142

ABSTRACT

Metabolomics is a data-based research strategy, the aims of which are to identify biomarker pictures of metabolic systems and metabolic perturbations and to formulate hypotheses to be tested. It involves the assay by mass spectrometry or NMR of many metabolites present in the biological system investigated. In this minireview, we outline studies in which metabolomics led to useful biomarkers of metabolic processes. We also illustrate how the discovery potential of metabolomics is enhanced by associating it with stable isotopic techniques.


Subject(s)
Biomarkers/metabolism , Metabolome/physiology , Metabolomics/methods , Animals , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Metabolomics/trends
20.
J Biol Chem ; 286(7): 5895-904, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21126961

ABSTRACT

Calcium levulinate (4-ketopentanoate) is used as an oral and parenteral source of calcium. We hypothesized that levulinate is converted in the liver to 4-hydroxypentanoate, a new drug of abuse, and that this conversion is accelerated by ethanol oxidation. We confirmed these hypotheses in live rats, perfused rat livers, and liver subcellular preparations. Levulinate is reduced to (R)-4-hydroxypentanoate by a cytosolic and a mitochondrial dehydrogenase, which are NADPH- and NADH-dependent, respectively. A mitochondrial dehydrogenase or racemase system also forms (S)-4-hydroxypentanoate. In livers perfused with [(13)C(5)]levulinate, there was substantial CoA trapping in levulinyl-CoA, 4-hydroxypentanoyl-CoA, and 4-phosphopentanoyl-CoA. This CoA trapping was increased by ethanol, with a 6-fold increase in the concentration of 4-phosphopentanoyl-CoA. Levulinate is catabolized by 3 parallel pathways to propionyl-CoA, acetyl-CoA, and lactate. Most intermediates of the 3 pathways were identified by mass isotopomer analysis and metabolomics. The production of 4-hydroxypentanoate from levulinate and its stimulation by ethanol is a potential public health concern.


Subject(s)
Calcium/pharmacology , Enzyme Inhibitors/pharmacokinetics , Levulinic Acids/pharmacokinetics , Liver/enzymology , Pentanoic Acids/metabolism , Substance-Related Disorders , Animals , Central Nervous System Depressants/pharmacology , Cytoplasm/enzymology , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , Ethanol/pharmacology , Levulinic Acids/adverse effects , Levulinic Acids/pharmacology , Male , Mitochondria, Liver/enzymology , Oxidation-Reduction , Pentanoic Acids/adverse effects , Perfusion , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL