Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Neurosci ; 47(5): 417-426, 2018 03.
Article in English | MEDLINE | ID: mdl-29368814

ABSTRACT

Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase-locking value in the frequency band 0.07-0.13 Hz between heart beat-to-beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner-naïve, anxious healthy subjects. The first method revealed that vascular 0.1-Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1-Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase-coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase-coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.


Subject(s)
Amygdala/metabolism , Anxiety Disorders/metabolism , Oxygen/blood , Prefrontal Cortex/metabolism , Adult , Anxiety Disorders/physiopathology , Brain Mapping/methods , Cerebrovascular Circulation/physiology , Female , Heart Rate/physiology , Humans , Magnetic Resonance Imaging/methods , Male
2.
Int J Cancer ; 139(1): 153-63, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-26910568

ABSTRACT

Amplification of MYCN is the signature genetic aberration of 20-25% of neuroblastoma and a stratifying marker associated with aggressive tumor behavior. The detection of heterogeneous MYCN amplification (hetMNA) poses a diagnostic dilemma due to the uncertainty of its relevance to tumor behavior. Here, we aimed to shed light on the genomic background which permits hetMNA in neuroblastoma and tied the occurrence to other stratifying markers and disease outcome. We performed SNP analysis using Affymetrix Cytoscan HD arrays on 63 samples including constitutional DNA, tumor, bone marrow and relapse samples of 26 patients with confirmed hetMNA by MYCN-FISH. Tumors of patients ≤18m were mostly aneuploid with numeric chromosomal aberrations (NCAs), presented a prominent MNA subclone and carried none or a few segmental chromosomal aberrations (SCAs). In older patients, tumors were mostly di- or tetraploid, contained a lower number of MNA cells and displayed a multitude of SCAs including concomitant 11q deletions. These patients often suffered disease progression, tumor dissemination and relapse. Restricted to aneuploid tumors, we detected chromosomes with uniparental di- or trisomy (UPD/UPT) in almost every sample. UPD11 was exclusive to tumors of younger patients whereas older patients featured UPD14. In this study, the MNA subclone appears to be constraint by the tumor environment and thus less relevant for tumor behavior in aggressive tumors with a high genomic instability and many segmental aberrations. A more benign tumor background and lower tumor stage may favor an outgrowth of the MNA clone but tumors generally responded better to treatment.


Subject(s)
Gene Amplification , Genetic Heterogeneity , Neuroblastoma/genetics , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Adolescent , Aneuploidy , Child , Child, Preschool , Chromosome Aberrations , Chromosome Deletion , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , N-Myc Proto-Oncogene Protein , Neuroblastoma/pathology , Polymorphism, Single Nucleotide
3.
PLoS One ; 19(3): e0301228, 2024.
Article in English | MEDLINE | ID: mdl-38512938

ABSTRACT

Determining if a sequence of numbers is ordered or not is one of the fundamental aspects of numerical processing linked to concurrent and future arithmetic skills. While some studies have explored the neural underpinnings of order processing using functional magnetic resonance imaging, our understanding of electrophysiological correlates is comparatively limited. To address this gap, we used a three-item symbolic numerical order verification task (with Arabic numerals from 1 to 9) to study event-related potentials (ERPs) in 73 adult participants in an exploratory approach. We presented three-item sequences and manipulated their order (ordered vs. unordered) as well as their inter-item numerical distance (one vs. two). Participants had to determine if a presented sequence was ordered or not. They also completed a speeded arithmetic fluency test, which measured their arithmetic skills. Our results revealed a significant mean amplitude difference in the grand average ERP waveform between ordered and unordered sequences in a time window of 500-750 ms at left anterior-frontal, left parietal, and central electrodes. We also identified distance-related amplitude differences for both ordered and unordered sequences. While unordered sequences showed an effect in the time window of 500-750 ms at electrode clusters around anterior-frontal and right-frontal regions, ordered sequences differed in an earlier time window (190-275 ms) in frontal and right parieto-occipital regions. Only the mean amplitude difference between ordered and unordered sequences showed an association with arithmetic fluency at the left anterior-frontal electrode. While the earlier time window for ordered sequences is consistent with a more automated and efficient processing of ordered sequential items, distance-related differences in unordered sequences occur later in time.


Subject(s)
Brain Mapping , Evoked Potentials , Adult , Humans , Reaction Time/physiology , Evoked Potentials/physiology , Frontal Lobe , Mathematics
4.
Front Hum Neurosci ; 17: 1160800, 2023.
Article in English | MEDLINE | ID: mdl-37180552

ABSTRACT

For their ease of accessibility and low cost, current Brain-Computer Interfaces (BCI) used to detect subjective emotional and affective states rely largely on electroencephalographic (EEG) signals. Public datasets are available for researchers to design models for affect detection from EEG. However, few designs focus on optimally exploiting the nature of the stimulus elicitation to improve accuracy. The RSVP protocol is used in this experiment to present human faces of emotion to 28 participants while EEG was measured. We found that artificially enhanced human faces with exaggerated, cartoonish visual features significantly improve some commonly used neural correlates of emotion as measured by event-related potentials (ERPs). These images elicit an enhanced N170 component, well known to relate to the facial visual encoding process. Our findings suggest that the study of emotion elicitation could exploit consistent, high detail, AI generated stimuli transformations to study the characteristics of electrical brain activity related to visual affective stimuli. Furthermore, this specific result might be useful in the context of affective BCI design, where a higher accuracy in affect decoding from EEG can improve the experience of a user.

5.
Neuropsychologia ; 179: 108448, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36528220

ABSTRACT

Previous studies on intelligence have demonstrated that higher abilities are associated with lower brain activation, indicating a higher neural efficiency. In other words, more able individuals use fewer brain resources. However, it is unclear whether the neural efficiency phenomenon also appears for mathematical performance, which is influenced by both domain-general giftedness and domain-specific competencies. Therefore, this study examined the effects of general giftedness (G) and excellence in mathematics (EM) on performance and brain activation while solving learning-based mathematical tasks that required translation from graphical to symbolic representations of functions. Overall, 118 high school students (aged 16-18) participated in the present study and were divided according to G and EM using a 2 × 2 study design. Participants worked on a function task requiring translation between symbolic and graphical representations of functions. Analyses of the behavioral data revealed positive effects of both G and EM on the accuracy of solutions and an interaction effect of both factors on reaction times, reflecting a positive effect of EM only among the gifted individuals. EEG analyses focused on oscillatory activity in the theta and alpha frequency bands and showed a significant effect of EM in the upper alpha band (10-12 Hz) event-related desynchronization (ERD) for both graphical and symbolic representations. Specifically, higher (compared to lower) EM was associated with a larger alpha ERD, indicating a higher level of brain activity. This stands in contrast with the neural efficiency phenomenon. These findings suggest that the neural efficiency phenomenon cannot be generalized to higher-order mathematical demands in high-performing individuals. Several explanations for this limitation are offered.


Subject(s)
Brain , Cognition , Humans , Cognition/physiology , Brain/physiology , Learning , Reaction Time/physiology , Electroencephalography , Cortical Synchronization
6.
J Exp Psychol Learn Mem Cogn ; 48(2): 199-212, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33539170

ABSTRACT

There is broad consensus on the assumption that adults solve single-digit multiplication problems almost exclusively by fact retrieval from memory. In contrast, there has been a long-standing debate on the cognitive processes involved in solving single-digit addition problems. This debate has evolved around two theoretical accounts. Proponents of a fact-retrieval account postulate that these are also solved through fact retrieval, whereas proponents of a compacted-counting account propose that solving very small additions (with operands between 1 and 4) involves highly automatized and unconscious compacted counting. In the present electroencephalography (EEG) study, we put these two accounts to the test by comparing neurophysiological correlates of solving very small additions and multiplications. Forty adults worked on an arithmetic production task involving all (nontie) single-digit additions and multiplications. Afterward, participants completed trial-by-trial strategy self-reports. In our EEG analyses, we focused on induced activity (event-related synchronization/desynchronization, ERS/ERD) in three frequency bands (theta, lower alpha, upper alpha). Across all frequency bands, we found higher evidential strength for similar rather than different neurophysiological processes accompanying the solution of very small addition and multiplication problems. In the alpha bands, evidence for similarity was even stronger when operand-1-problems were excluded. In two additional analyses, we showed that ERS/ERD can differentiate between self-reported problem-solving strategies (retrieval vs. procedure) and between very small n × 1 and n + 1 problems, demonstrating its high sensitivity to cognitive processes in arithmetic. The present findings support a fact-retrieval account, suggesting that both very small additions and multiplications are solved through fact retrieval. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Subject(s)
Electroencephalography , Problem Solving , Adult , Humans , Mathematics , Problem Solving/physiology , Self Report
7.
J Neuroeng Rehabil ; 8: 66, 2011 Dec 13.
Article in English | MEDLINE | ID: mdl-22165907

ABSTRACT

This document provides a review of the techniques and therapies used in gait rehabilitation after stroke. It also examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity.The methods reviewed comprise classical gait rehabilitation techniques (neurophysiological and motor learning approaches), functional electrical stimulation (FES), robotic devices, and brain-computer interfaces (BCI).From the analysis of these approaches, we can draw the following conclusions. Regarding classical rehabilitation techniques, there is insufficient evidence to state that a particular approach is more effective in promoting gait recovery than other. Combination of different rehabilitation strategies seems to be more effective than over-ground gait training alone. Robotic devices need further research to show their suitability for walking training and their effects on over-ground gait. The use of FES combined with different walking retraining strategies has shown to result in improvements in hemiplegic gait. Reports on non-invasive BCIs for stroke recovery are limited to the rehabilitation of upper limbs; however, some works suggest that there might be a common mechanism which influences upper and lower limb recovery simultaneously, independently of the limb chosen for the rehabilitation therapy. Functional near infrared spectroscopy (fNIRS) enables researchers to detect signals from specific regions of the cortex during performance of motor activities for the development of future BCIs. Future research would make possible to analyze the impact of rehabilitation on brain plasticity, in order to adapt treatment resources to meet the needs of each patient and to optimize the recovery process.


Subject(s)
Gait/physiology , Stroke Rehabilitation , Data Interpretation, Statistical , Electric Stimulation , Electroencephalography , Humans , Learning , Movement , Neurophysiology , Robotics , Spectroscopy, Near-Infrared , User-Computer Interface
8.
Educ Psychol Rev ; 33(4): 1887-1906, 2021.
Article in English | MEDLINE | ID: mdl-34866862

ABSTRACT

The inverse relationship between test anxiety and test performance is commonly explained by test-anxious students' tendency to worry about a test and the consequences of failing. However, other cognitive facets of test anxiety have been identified that could account for this link, including interference by test-irrelevant thoughts and lack of confidence. In this study, we compare different facets of test anxiety in predicting test performance. Seven hundred thirty university students filled out the German Test Anxiety Inventory after completing a battery of standardized tests assessing general intelligence and mathematical competencies. Multiple regressions revealed that interference and lack of confidence but not worry or arousal explained unique variance in students' test performance. No evidence was found for a curvilinear relationship between arousal and performance. The present results call for revisiting the role of worries in explaining the test anxiety-performance link and can help educators to identify students who are especially at risk of underperforming on tests.

9.
Neuroscience ; 477: 89-105, 2021 11 21.
Article in English | MEDLINE | ID: mdl-34648868

ABSTRACT

Over the last decades, interest in transcranial electrical stimulation (tES) has grown, as it might allow for causal investigations of the associations between cortical activity and cognition as well as to directly influence cognitive performance. The main objectives of the present work were to assess whether tES can enhance the acquisition and application of arithmetic abilities, and whether it enables a better assessment of underlying neurophysiological processes. To this end, the present, double-blind, sham-controlled study assessed the effects of six active stimulations (three tES protocols: anodal transcranial direct current stimulation (tDCS), alpha band transcranial alternating current stimulation (tACS), and theta band tACS; targeting the left dorsolateral prefrontal cortex or the left posterior parietal cortex) on the acquisition of an arithmetic procedure, arithmetic facts, and event-related synchronization/desynchronization (ERS/ERD) patterns. 137 healthy adults were randomly assigned to one of seven groups, each receiving one of the tES-protocols during learning. Results showed that frontal theta band tACS reduced the repetitions needed to learn novel facts and both, frontal and parietal theta band tACS accelerated the decrease in calculation times in fact learning problems. The beneficial effect of frontal theta band tACS may reflect enhanced executive functions, allowing for better control and inhibition processes and hence, a faster acquisition and integration of novel fact knowledge. However, there were no significant effects of the stimulations on procedural learning or ERS/ERD patterns. Overall, theta band tACS appears promising as a support for arithmetic fact training, but effects on procedural calculations and neurophysiological processes remain ambiguous.


Subject(s)
Transcranial Direct Current Stimulation , Adult , Cognition , Dorsolateral Prefrontal Cortex , Humans , Learning , Parietal Lobe
10.
Sci Rep ; 11(1): 23278, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857841

ABSTRACT

Numerous studies have identified neurophysiological correlates of performing arithmetic in adults. For example, oscillatory electroencephalographic (EEG) patterns associated with retrieval and procedural strategies are well established. Whereas fact retrieval has been linked to enhanced left-hemispheric theta ERS (event-related synchronization), procedural strategies are accompanied by increased bilateral alpha ERD (event-related desynchronization). It is currently not clear if these findings generalize to children. Our study is the first to investigate oscillatory EEG activity related to strategy use and arithmetic operations in children. We assessed ERD/ERS correlates of 31 children in fourth grade (aged between nine and ten years) during arithmetic problem solving. We presented multiplication and subtraction problems, which children solved with fact retrieval or a procedure. We analyzed these four problem categories (retrieved multiplications, retrieved subtractions, procedural multiplications, and procedural subtractions) in our study. In summary, we found similar strategy-related patterns to those reported in previous studies with adults. That is, retrieval problems elicited stronger left-hemispheric theta ERS and weaker alpha ERD as compared to procedural problems. Interestingly, we observed neurophysiological differences between multiplications and subtractions within retrieval problems. Although there were no response time or accuracy differences, retrieved multiplications were accompanied by larger theta ERS than retrieved subtractions. This finding could indicate that retrieval of multiplication and subtraction facts are distinct processes, and/or that multiplications are more frequently retrieved than subtractions in this age group.


Subject(s)
Brain/physiology , Child Behavior/physiology , Child Behavior/psychology , Electroencephalography , Mathematical Computing , Problem Solving/physiology , Child , Female , Humans , Male
11.
Biomed Tech (Berl) ; 55(1): 5-18, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20128741

ABSTRACT

A brain-computer interface (BCI) is a new communication channel between humans and computers that translates brain activity into recognizable command and control signals. Attended events can evoke P300 potentials in the electroencephalogram. Hence, the P300 has been used in BCI systems to spell, control cursors or robotic devices, and other tasks. This paper introduces a novel P300 BCI to communicate Chinese characters. To improve classification accuracy, an optimization algorithm (particle swarm optimization, PSO) is used for channel selection (i.e., identifying the best electrode configuration). The effects of different electrode configurations on classification accuracy were tested by Bayesian linear discriminant analysis offline. The offline results from 11 subjects show that this new P300 BCI can effectively communicate Chinese characters and that the features extracted from the electrodes obtained by PSO yield good performance.


Subject(s)
Algorithms , Brain/physiology , Communication Aids for Disabled , Electroencephalography/methods , Event-Related Potentials, P300/physiology , Pattern Recognition, Automated/methods , User-Computer Interface , Artificial Intelligence , Bayes Theorem , China , Computer Peripherals , Discriminant Analysis , Female , Humans , Male , Young Adult
12.
Front Hum Neurosci ; 14: 576241, 2020.
Article in English | MEDLINE | ID: mdl-33192406

ABSTRACT

The aim of this work was to re-evaluate electrophysiological data from a previous study on motor imagery (MI) with a special focus on observed inter- and intra-individual differences. More concretely, we investigated event-related desynchronization/synchronization patterns during sports MI (playing tennis) compared with simple MI (squeezing a ball) and discovered high variability across participants. Thirty healthy volunteers were divided in two groups; the experimental group (EG) performed a physical exercise between two imagery sessions, and the control group (CG) watched a landscape movie without physical activity. We computed inter-individual differences by assessing the dissimilarities among subjects for each group, condition, time period, and frequency band. In the alpha band, we observe some clustering in the ranking of the subjects, therefore showing smaller distances than others. Moreover, in our statistical evaluation, we observed a consistency in ranking across time periods both for the EG and for the CG. For the latter, we also observed similar rankings across conditions. On the contrary, in the beta band, the ranking of the subjects was more similar for the EG across conditions and time periods than for the subjects of the CG. With this study, we would like to draw attention to variability measures instead of primarily focusing on the identification of common patterns across participants, which often do not reflect the whole neurophysiological reality.

13.
Front Hum Neurosci ; 14: 17, 2020.
Article in English | MEDLINE | ID: mdl-32116605

ABSTRACT

Arithmetic abilities are among the most important school-taught skills and form the basis for higher mathematical competencies. At the same time, their acquisition and application can be challenging. Hence, there is broad interest in methods to improve arithmetic abilities. One promising method is transcranial direct current stimulation (tDCS). In the present study, we compared two anodal tDCS protocols in their efficacy to improve arithmetic performance and working memory. In addition, we investigated stimulation-related electrophysiological changes. Three groups of participants solved arithmetic problems (additions and subtractions) and an n-back task before, during, and after receiving either frontal or parietal anodal tDCS (25 min; 1 mA) or sham stimulation. EEG was simultaneously recorded to assess stimulation effects on event-related (de-) synchronisation (ERS/ERD) in theta and alpha bands. Persons receiving frontal stimulation showed an acceleration of calculation speed in large subtractions from before to during and after stimulation. However, a comparable, but delayed (apparent only after stimulation) increase was also found in the sham stimulation group, while it was absent in the group receiving parietal stimulation. In additions and small subtractions as well as the working memory task, analyses showed no effects of stimulation. Results of ERS/ERD during large subtractions indicate changes in ERS/ERD patterns over time. In the left hemisphere there was a change from theta band ERD to ERS in all three groups, whereas a similar change in the right hemisphere was restricted to the sham group. Taken together, tDCS did not lead to a general improvement of arithmetic performance. However, results indicate that frontal stimulation accelerated training gains, while parietal stimulation halted them. The absence of general performance improvements, but acceleration of training effects might be a further indicator of the advantages of using tDCS as training or learning support over tDCS as a sole performance enhancer.

15.
Article in English | MEDLINE | ID: mdl-35990374

ABSTRACT

The development of the Brain Imaging Data Structure (BIDS; Gorgolewski et al., 2016) gave the neuroscientific community a standard to organize and share data. BIDS prescribes file naming conventions and a folder structure to store data in a set of already existing file formats. Next to rules about organization of the data itself, BIDS provides standardized templates to store associated metadata in the form of Javascript Object Notation (JSON) and tab separated value (TSV) files. It thus facilitates data sharing, eases metadata querying, and enables automatic data analysis pipelines. BIDS is a rich system to curate, aggregate, and annotate neuroimaging databases.

16.
Front Psychol ; 9: 1976, 2018.
Article in English | MEDLINE | ID: mdl-30410454

ABSTRACT

Motor imagery is often used inducing changes in electroencephalographic (EEG) signals for imagery-based brain-computer interfacing (BCI). A BCI is a device translating brain signals into control signals providing severely motor-impaired persons with an additional, non-muscular channel for communication and control. In the last years, there is increasing interest using BCIs also for healthy people in terms of enhancement or gaming. Most studies focusing on improving signal processing feature extraction and classification methods, but the performance of a BCI can also be improved by optimizing the user's control strategies, e.g., using more vivid and engaging mental tasks for control. We used multichannel EEG to investigate neural correlates of a sports imagery task (playing tennis) compared to a simple motor imagery task (squeezing a ball). To enhance the vividness of both tasks participants performed a short physical exercise between two imagery sessions. EEG was recorded from 60 closely spaced electrodes placed over frontal, central, and parietal areas of 30 healthy volunteers divided in two groups. Whereas Group 1 (EG) performed a physical exercise between the two imagery sessions, Group 2 (CG) watched a landscape movie without physical activity. Spatiotemporal event-related desynchronization (ERD) and event-related synchronization (ERS) patterns during motor imagery (MI) tasks were evaluated. The results of the EG showed significant stronger ERD patterns in the alpha frequency band (8-13 Hz) during MI of tennis after training. Our results are in evidence with previous findings that MI in combination with motor execution has beneficial effects. We conclude that sports MI combined with an interactive game environment could be a future promising task in motor learning and rehabilitation improving motor functions in late therapy processes or support neuroplasticity.

17.
Biol Psychol ; 138: 199-210, 2018 10.
Article in English | MEDLINE | ID: mdl-30253233

ABSTRACT

This study investigated the influence of target probability on the neural response to target detection in free viewing visual search. Participants were asked to indicate the number of targets (one or two) among distractors in a visual search task while EEG and eye movements were co-registered. Target probability was manipulated by varying the set size of the displays between 10, 22, and 30 items. Fixation-related potentials time-locked to first target fixations revealed a pronounced P300 at the centro-parietal cortex with larger amplitudes for set sizes 22 and 30 than for set size 10. With increasing set size, more distractor fixations preceded the detection of the target, resulting in a decreased target probability and, consequently, a larger P300. For distractors, no increase of P300 amplitude with set size was observed. The findings suggest that set size specifically affects target but not distractor processing in overt serial visual search.


Subject(s)
Attention/physiology , Cerebral Cortex/physiology , Evoked Potentials/physiology , Fixation, Ocular/physiology , Probability , Visual Perception/physiology , Adult , Event-Related Potentials, P300/physiology , Female , Humans , Male , Young Adult
18.
PLoS One ; 13(11): e0206675, 2018.
Article in English | MEDLINE | ID: mdl-30475859

ABSTRACT

Participation in magnetic resonance imaging (MRI) scanning is associated with increased anxiety, thus possibly impacting baseline recording for functional MRI studies. The goal of the paper is to elucidate the significant hemispheric asymmetry between blood-oxygenation-level-dependent (BOLD) signals from precentral gyrus (PCG) and insula in 23 healthy individuals without any former MRI experience recently published in a PLOSONE paper. In addition to BOLD signals state anxiety and heart rate variability (HRV) were analyzed in two resting state sessions (R1, R2). Phase-locking and time delays from BOLD signals were computed in the frequency band 0.07-0.13 Hz. Positive (pTD) and negative time delays (nTD) were found. The pTD characterize descending neural BOLD oscillations spreading from PCG to insula and nTD characterize ascending vascular BOLD oscillations related to blood flow in the middle cerebral artery. HRV power in two low frequency bands 0.06-0.1 Hz and 0.1-0.14 Hz was computed. Based on the anxiety change from R1 to R2, two groups were separated: one with a strong anxiety decline (large change group) and one with a moderate decline or even anxiety increase (small change group). A significant correlation was found only between the left-hemispheric time delay (pTD, nTD) and anxiety change, with a dominance of nTD in the large change group. The analysis of within-scanner HRV revealed a pronounced increase of low frequency power between both resting states, dominant in the band 0.06-0.1 Hz in the large change group and in the band 0.1-0.14 Hz in the small change group. These results suggest different mechanisms related to anxiety processing in healthy individuals. One mechanism (large anxiety change) could embrace an increase of blood circulation in the territory of the left middle cerebral artery (vascular BOLD) and another (small anxiety change) translates to rhythmic central commands (neural BOLD) in the frequency band 0.1-0.14 Hz.


Subject(s)
Anxiety/etiology , Anxiety/physiopathology , Cerebral Cortex/physiopathology , Heart Rate , Magnetic Resonance Imaging/psychology , Oxygen/blood , Adult , Anxiety/diagnostic imaging , Brain Mapping , Cerebral Cortex/blood supply , Cerebral Cortex/diagnostic imaging , Cerebrovascular Circulation , Female , Heart Rate/physiology , Humans , Magnetic Resonance Imaging/adverse effects , Male , Respiration , Rest , Young Adult
19.
Brain Res Bull ; 72(1): 57-65, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-17303508

ABSTRACT

Recent investigations on oscillatory EEG dynamics by means of event-related synchronisation and desynchronisation (ERS/ERD) suggest that first language semantic information processing is primarily reflected in the theta (4-7 Hz) and alpha (7-13 Hz) frequency bands. In this pilot study we explore whether similar ERS/ERD patterns emerge during language translation and which frequency bands sensitively respond to the difficulty of translation and the translation success. Thirteen female students of translation and interpreting were visually presented high and low frequency English words that had to be translated into German. Time-frequency representations of ERS/ERD between 2 and 50 Hz displayed a theta ERS response about 200-600 ms after word presentation, a beta ERD from about 400 ms, and alpha ERS and ERD patterns about 200-400 ms after word presentation. Statistical analyses of the ERS/ERD data in the theta (4-7 Hz), two alpha frequency bands (7-10 Hz and 10-13 Hz), and a beta band (20-30 Hz) predominantly revealed: (a) higher parietal theta ERS and frontal upper alpha ERD during the translation of low as compared to high frequency words, and (b) generally stronger ERD in the lower alpha band and larger left-hemispheric upper alpha ERD for successfully translated in contrast to not translated low frequency words. These findings provide first evidence of the sensitivity of the theta and alpha ERS/ERD measure to lexical-semantic processes involved in language translation.


Subject(s)
Alpha Rhythm , Evoked Potentials/physiology , Theta Rhythm , Translating , Analysis of Variance , Brain Mapping , Electroencephalography/methods , Female , Humans , Pattern Recognition, Physiological
20.
PLoS One ; 12(1): e0168097, 2017.
Article in English | MEDLINE | ID: mdl-28052074

ABSTRACT

In the resting state, blood oxygen level-dependent (BOLD) oscillations with a frequency of about 0.1 Hz are conspicuous. Whether their origin is neural or vascular is not yet fully understood. Furthermore, it is not clear whether these BOLD oscillations interact with slow oscillations in heart rate (HR). To address these two questions, we estimated phase-locking (PL) values between precentral gyrus (PCG) and insula in 25 scanner-naïve individuals during rest and stimulus-paced finger movements in both hemispheres. PL was quantified in terms of time delay and duration in the frequency band 0.07 to 0.13 Hz. Results revealed both positive and negative time delays. Positive time delays characterize neural BOLD oscillations leading in the PCG, whereas negative time delays represent vascular BOLD oscillations leading in the insula. About 50% of the participants revealed positive time delays distinctive for neural BOLD oscillations, either with short or long unilateral or bilateral phase-locking episodes. An expected preponderance of neural BOLD oscillations was found in the left hemisphere during right-handed movement and unexpectedly in the right hemisphere during rest. Only neural BOLD oscillations were significantly associated with heart rate variability (HRV) in the 0.1-Hz range in the first resting state. It is well known that participating in magnetic resonance imaging (MRI) studies may be frightening and cause anxiety. In this respect it is important to note that the most significant hemispheric asymmetry (p<0.002) with a right-sided dominance of neural BOLD and a left-sided dominance of vascular BOLD oscillations was found in the first resting session in the scanner-naïve individuals. Whether the enhanced left-sided perfusion (dominance of vascular BOLD) or the right-sided dominance of neural BOLD is related to the increased level of anxiety, attention or stress needs further research.


Subject(s)
Blood Vessels/physiology , Brain/physiology , Heart Rate/physiology , Movement/physiology , Oxygen/blood , Rest/physiology , Adult , Cerebrum/physiology , Female , Humans , Male , Statistics, Nonparametric , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL