Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
J Pathol ; 263(2): 166-177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38629245

ABSTRACT

Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Fibrosarcoma , Nephroma, Mesoblastic , Oncogene Proteins, Fusion , Proto-Oncogene Proteins c-raf , Humans , Fibrosarcoma/genetics , Fibrosarcoma/pathology , Proto-Oncogene Proteins c-raf/genetics , Infant , Oncogene Proteins, Fusion/genetics , Nephroma, Mesoblastic/genetics , Nephroma, Mesoblastic/pathology , Female , Male , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Gene Fusion , Signal Transduction/genetics , Proto-Oncogene Proteins c-ets/genetics , Cell Proliferation , Gene Rearrangement , ETS Translocation Variant 6 Protein , Receptor, trkC
2.
Am J Hum Genet ; 108(3): 502-516, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33596411

ABSTRACT

Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals with truncating variants in SPEN to define a neurodevelopmental disorder presenting with features that overlap considerably with those of proximal del1p36 syndrome. The clinical profile of this disease includes developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI, especially in females. SPEN also emerges as a relevant gene for del1p36 syndrome by co-expression analyses. Finally, we show that haploinsufficiency of SPEN is associated with a distinctive DNA methylation episignature of the X chromosome in affected females, providing further evidence of a specific contribution of the protein to the epigenetic control of this chromosome, and a paradigm of an X chromosome-specific episignature that classifies syndromic traits. We conclude that SPEN is required for multiple developmental processes and SPEN haploinsufficiency is a major contributor to a disorder associated with deletions centromeric to the previously established 1p36 critical regions.


Subject(s)
Chromosome Disorders/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, X/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics , Adolescent , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/physiopathology , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Female , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Phenotype , Young Adult
3.
Mov Disord ; 39(7): 1225-1231, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685873

ABSTRACT

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.


Subject(s)
Ketoglutarate Dehydrogenase Complex , Leigh Disease , Leigh Disease/genetics , Humans , Male , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/deficiency , Mitochondrial Proteins/genetics , Child, Preschool , Infant
4.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125883

ABSTRACT

Bardet-Biedl syndrome (BBS) is a rare recessive multisystem disorder characterized by retinitis pigmentosa, obesity, postaxial polydactyly, cognitive deficits, and genitourinary defects. BBS is clinically variable and genetically heterogeneous, with 26 genes identified to contribute to the disorder when mutated, the majority encoding proteins playing role in primary cilium biogenesis, intraflagellar transport, and ciliary trafficking. Here, we report on an 18-year-old boy with features including severe photophobia and central vision loss since childhood, hexadactyly of the right foot and a supernumerary nipple, which were suggestive of BBS. Genetic analyses using targeted resequencing and exome sequencing failed to provide a conclusive genetic diagnosis. Whole-genome sequencing (WGS) allowed us to identify compound heterozygosity for a missense variant and a large intragenic deletion encompassing exon 12 in BBS9 as underlying the condition. We assessed the functional impact of the identified variants and demonstrated that they impair BBS9 function, with significant consequences for primary cilium formation and morphology. Overall, this study further highlights the usefulness of WGS in the diagnostic workflow of rare diseases to reach a definitive diagnosis. This report also remarks on a requirement for functional validation analyses to more effectively classify variants that are identified in the frame of the diagnostic workflow.


Subject(s)
Bardet-Biedl Syndrome , Whole Genome Sequencing , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/diagnosis , Humans , Male , Adolescent , Cilia/pathology , Cilia/genetics , Cytoskeletal Proteins
5.
Am J Hum Genet ; 107(6): 1129-1148, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33186545

ABSTRACT

The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Vacuolar Proton-Translocating ATPases/genetics , Alleles , Animals , Brain/abnormalities , Cell Cycle , Centrosome/metabolism , Endosomes/metabolism , Fibroblasts/metabolism , Genomics , HEK293 Cells , HeLa Cells , Humans , Mice , Neurons/metabolism , Protein Domains , Protein Transport , Spindle Apparatus/metabolism
6.
Am J Hum Genet ; 107(3): 499-513, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32721402

ABSTRACT

Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.


Subject(s)
Carcinogenesis/genetics , Mitogen-Activated Protein Kinase 1/genetics , Neurodevelopmental Disorders/genetics , Noonan Syndrome/genetics , Child, Preschool , Female , Humans , MAP Kinase Signaling System/genetics , Male , Mutation, Missense/genetics , Neurodevelopmental Disorders/pathology , Noonan Syndrome/physiopathology , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Signal Transduction , Exome Sequencing , ras Proteins/genetics
7.
Genet Med ; 25(11): 100922, 2023 11.
Article in English | MEDLINE | ID: mdl-37403762

ABSTRACT

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Animals , Humans , Rats , Autism Spectrum Disorder/genetics , Epilepsy/genetics , Mutation, Missense/genetics , N-Methylaspartate/metabolism , Neurons/metabolism , Rabphilin-3A
8.
J Med Genet ; 59(2): 170-179, 2022 02.
Article in English | MEDLINE | ID: mdl-33323470

ABSTRACT

INTRODUCTION: The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS: We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS: We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION: Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.


Subject(s)
Chromatin/metabolism , Neurodevelopmental Disorders/genetics , Protein Kinases/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , Humans , Male , Metabolome , Middle Aged , Mutation , Mutation, Missense , Neurodevelopmental Disorders/enzymology , Pedigree , Protein Interaction Mapping , Protein Kinases/metabolism , Exome Sequencing , Young Adult
9.
Hum Mutat ; 43(9): 1201-1215, 2022 09.
Article in English | MEDLINE | ID: mdl-35583122

ABSTRACT

The recent identification of noncoding variants with pathogenic effects suggests that these variations could underlie a significant number of undiagnosed cases. Several computational methods have been developed to predict the functional impact of noncoding variants, but they exhibit only partial concordance and are not integrated with functional annotation resources, making the interpretation of these variants still challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine regulators of gene expression and play crucial functions in several biological processes, such as cell proliferation and differentiation. An increasing number of studies demonstrate a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian diseases and complex traits. To predict the functional effect of miRNA SNVs, we implemented a new meta-predictor, MiRLog, and we integrated it into a comprehensive database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs, providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR were used to explore the genetic variability of miRNAs in 15,708 human genomes included in the gnomAD project, finding several ultra-rare SNVs with a potentially deleterious effect on miRNA biogenesis and function representing putative contributors to human phenotypes.


Subject(s)
MicroRNAs , Base Sequence , Computational Biology/methods , Genome, Human/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Nucleotides , Polymorphism, Single Nucleotide
10.
Am J Hum Genet ; 105(3): 493-508, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31447100

ABSTRACT

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.


Subject(s)
Cellular Senescence/physiology , Histones/physiology , Aneuploidy , Cell Nucleolus/metabolism , Child , Chromatin/metabolism , DNA Methylation , Female , Histones/chemistry , Humans , Infant , Male , Middle Aged
11.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077264

ABSTRACT

Quiescent cancer cells (QCCs) are a common feature of solid tumors, representing a major obstacle to the long-term success of cancer therapies. We isolated QCCs ex vivo from non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) xenografts with a label-retaining strategy and compared QCCs gene expression profiles to identify a shared "quiescence signature". Principal Component Analysis (PCA) revealed a specific component neatly discriminating quiescent and replicative phenotypes in NSCLC and CRC. The discriminating component showed significant overlapping, with 688 genes in common including ZEB2, a master regulator of stem cell plasticity and epithelial-to-mesenchymal transition (EMT). Gene set enrichment analysis showed that QCCs of both NSCLC and CRC had an increased expression of factors related to stemness/self renewal, EMT, TGF-ß, morphogenesis, cell adhesion and chemotaxis, whereas proliferating cells overexpressed Myc targets and factors involved in RNA metabolism. Eventually, we analyzed in depth by means of a complex network approach, both the 'morphogenesis module' and the subset of differentially expressed genes shared by NCSLC and CRC. This allowed us to recognize different gene regulation network wiring for quiescent and proliferating cells and to underpin few genes central for network integration that may represent new therapeutic vulnerabilities. Altogether, our results highlight common regulatory pathways in QCCs of lung and colorectal tumors that may be the target of future therapeutic interventions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Colorectal Neoplasms , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Lung/pathology , Lung Neoplasms/metabolism
12.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36498982

ABSTRACT

Inherited retinal degeneration (IRD) represents a clinically variable and genetically heterogeneous group of disorders characterized by photoreceptor dysfunction. These diseases typically present with progressive severe vision loss and variable onset, ranging from birth to adulthood. Genomic sequencing has allowed to identify novel IRD-related genes, most of which encode proteins contributing to photoreceptor-cilia biogenesis and/or function. Despite these insights, knowledge gaps hamper a molecular diagnosis in one-third of IRD cases. By exome sequencing in a cohort of molecularly unsolved individuals with IRD, we identified a homozygous splice site variant affecting the transcript processing of TUB, encoding the first member of the Tubby family of bipartite transcription factors, in a sporadic case with retinal dystrophy. A truncating homozygous variant in this gene had previously been reported in a single family with three subjects sharing retinal dystrophy and obesity. The clinical assessment of the present patient documented a slightly increased body mass index and no changes in metabolic markers of obesity, but confirmed the occurrence of retinal detachment. In vitro studies using patient-derived fibroblasts showed the accelerated degradation of the encoded protein and aberrant cilium morphology and biogenesis. These findings definitely link impaired TUB function to retinal dystrophy and provide new data on the clinical characterization of this ultra-rare retinal ciliopathy.


Subject(s)
Ciliopathies , Retinal Dystrophies , Humans , Adult , Cilia/genetics , Retina , Ciliopathies/genetics , Retinal Dystrophies/genetics , Proteins/genetics , Obesity , Mutation , Pedigree
13.
Am J Hum Genet ; 103(4): 621-630, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30290154

ABSTRACT

Aberrant activation or inhibition of potassium (K+) currents across the plasma membrane of cells has been causally linked to altered neurotransmission, cardiac arrhythmias, endocrine dysfunction, and (more rarely) perturbed developmental processes. The K+ channel subfamily K member 4 (KCNK4), also known as TRAAK (TWIK-related arachidonic acid-stimulated K+ channel), belongs to the mechano-gated ion channels of the TRAAK/TREK subfamily of two-pore-domain (K2P) K+ channels. While K2P channels are well known to contribute to the resting membrane potential and cellular excitability, their involvement in pathophysiological processes remains largely uncharacterized. We report that de novo missense mutations in KCNK4 cause a recognizable syndrome with a distinctive facial gestalt, for which we propose the acronym FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth). Patch-clamp analyses documented a significant gain of function of the identified KCNK4 channel mutants basally and impaired sensitivity to mechanical stimulation and arachidonic acid. Co-expression experiments indicated a dominant behavior of the disease-causing mutations. Molecular dynamics simulations consistently indicated that mutations favor sealing of the lateral intramembrane fenestration that has been proposed to negatively control K+ flow by allowing lipid access to the central cavity of the channel. Overall, our findings illustrate the pleiotropic effect of dysregulated KCNK4 function and provide support to the hypothesis of a gating mechanism based on the lateral fenestrations of K2P channels.


Subject(s)
Ion Channel Gating/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Potassium Channels/genetics , Child , Child, Preschool , Female , Humans , Infant , Male , Molecular Dynamics Simulation
14.
Am J Med Genet A ; 185(10): 3153-3160, 2021 10.
Article in English | MEDLINE | ID: mdl-34159694

ABSTRACT

Biallelic mutations in B3GALT6, coding for a galactosyltransferase involved in the synthesis of glycosaminoglycans (GAGs), have been associated with various clinical conditions, causing spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1 or SEMDJL Beighton type), Al-Gazali syndrome (ALGAZ), and a severe progeroid form of Ehlers-Danlos syndrome (EDSSPD2). In the 2017 Ehlers-Danlos syndrome (EDS) classification, Beta3GalT6-related disorders were grouped in the spondylodysplastic EDSs together with spondylodysplastic EDSs due to B4GALT7 and SLC39A13 mutations. Herein, we describe a patient with a previously unreported homozygous pathogenic B3GALT6 variant resulting in a complex phenotype more severe than spondyloepimetaphyseal dysplasia with joint laxity type 1, and having dural ectasia and aortic dilation as additionally associated features, further broadening the phenotypic spectrum of the Beta3GalT6-related syndromes. We also document the utility of repeating sequencing in patients with uninformative exomes, particularly when performed by using "first generations" enrichment capture methods.


Subject(s)
Galactosyltransferases/genetics , Joint Instability/genetics , Osteochondrodysplasias/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Adolescent , Adult , Anterior Eye Segment/abnormalities , Anterior Eye Segment/pathology , Bone and Bones/abnormalities , Bone and Bones/pathology , Child , Child, Preschool , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/pathology , Female , Homozygote , Humans , Joint Instability/diagnosis , Joint Instability/diagnostic imaging , Joint Instability/pathology , Joint Instability/physiopathology , Mutation/genetics , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/physiopathology , Phenotype , Young Adult
15.
Am J Med Genet A ; 185(6): 1712-1720, 2021 06.
Article in English | MEDLINE | ID: mdl-33675273

ABSTRACT

De novo variants in the WDR26 gene leading to haploinsufficiency have recently been associated with Skraban-Deardorff syndrome. This condition is an ultra-rare autosomal dominant neurodevelopmental disorder characterized by a broad range of clinical signs, including intellectual disability (ID), developmental delay (DD), seizures, abnormal facial features, feeding difficulties, and minor skeletal anomalies. Currently, 18 cases have been reported in the literature and for only 15 of them a clinical description is available. Here, we describe a child with Skraban-Deardorff syndrome associated with the WDR26 pathogenic de novo variant NM_025160.6:c.69dupC, p.(Gly24ArgfsTer48), and an adult associated with the pathogenic de novo variant c.1076G > A, p.(Trp359Ter). The adult patient was a 29-year-old female with detailed information on clinical history and pharmacological treatments since birth, providing an opportunity to map disease progression and patient management. By comparing our cases with published reports of Skraban-Deardorff syndrome, we provide a genetic and clinical summary of this ultrarare condition, describe the clinical management from childhood to adult age, and further expand on the clinical phenotype.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Adult , Child , Child, Preschool , Chromosome Deletion , Female , Haploinsufficiency/genetics , Humans , Intellectual Disability/pathology , Male , Mutation , Neurodevelopmental Disorders/pathology , Phenotype
16.
Int J Mol Sci ; 22(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199759

ABSTRACT

The TWIK-related spinal cord potassium channel (TRESK) is encoded by KCNK18, and variants in this gene have previously been associated with susceptibility to familial migraine with aura (MIM #613656). A single amino acid substitution in the same protein, p.Trp101Arg, has also been associated with intellectual disability (ID), opening the possibility that variants in this gene might be involved in different disorders. Here, we report the identification of KCNK18 biallelic missense variants (p.Tyr163Asp and p.Ser252Leu) in a family characterized by three siblings affected by mild-to-moderate ID, autism spectrum disorder (ASD) and other neurodevelopment-related features. Functional characterization of the variants alone or in combination showed impaired channel activity. Interestingly, Ser252 is an important regulatory site of TRESK, suggesting that alteration of this residue could lead to additive downstream effects. The functional relevance of these mutations and the observed co-segregation in all the affected members of the family expand the clinical variability associated with altered TRESK function and provide further insight into the relationship between altered function of this ion channel and human disease.


Subject(s)
Alleles , Intellectual Disability/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Potassium Channels/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Base Sequence , Calcineurin/metabolism , Female , Genome, Human , Humans , Ion Channel Gating/drug effects , Ionomycin/pharmacology , Male , Pedigree , Potassium Channels/chemistry , Siblings , Xenopus laevis/metabolism , Young Adult
17.
Hum Mol Genet ; 27(11): 1892-1904, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29547997

ABSTRACT

Microtubules participate in fundamental cellular processes, including chromosomal segregation and cell division, migration and intracellular trafficking. Their proper function is required for correct central nervous system development and operative preservation, and mutations in genes coding tubulins, the constituting units of microtubules, underlie a family of neurodevelopmental and neurodegenerative diseases, collectively known as 'tubulinopathies', characterized by a wide range of neuronal defects resulting from defective proliferation, migration and function. Here, we causally link a previously unreported missense mutation in TUBB2A (c.1249G>A, p.D417N), encoding one of the neuron-specific ß-tubulin isotype II, to a disorder characterized by progressive spastic paraplegia, peripheral sensory-motor polyneuropathy and ataxia. Asp417 is a highly conserved solvent-exposed residue at the site mediating binding of kinesin superfamily motors. Impaired binding to KIF1A, a neuron-specific kinesin required for transport of synaptic vesicle precursors of the disease-associated TUBB2A mutant, was predicted by structural analyses and confirmed experimentally in vitro. We show that overexpression of TUBB2AD417N disrupts the mitotic spindle bipolarity and morphology and affects the M phase entry and length. Differently from the TUBB2AN247K and TUBB2AA248V, two mutants previously identified to affect neurodevelopment, TUBB2AD417N retains the ability to assemble into microtubules. Consistent with the differential clinical and structural impact, TUBB2AA248V does not drastically affect TUBB2A binding to KIF1A, nor mitotic spindle bipolarity. Overall, our data demonstrate a pathogenic role of the p.D417N substitution that is different from previously reported TUBB2A mutations and expand the phenotypic spectrum associated with mutations in this gene.


Subject(s)
Intellectual Disability/genetics , Kinesins/genetics , Muscle Spasticity/genetics , Optic Atrophy/genetics , Paraplegia/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Degenerations/genetics , Tubulin/genetics , Adolescent , Adult , Cell Movement/genetics , Cell Proliferation/genetics , Child , Female , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/physiopathology , Male , Microtubules/genetics , Microtubules/pathology , Muscle Spasticity/diagnostic imaging , Muscle Spasticity/physiopathology , Neurons/metabolism , Neurons/pathology , Optic Atrophy/diagnostic imaging , Optic Atrophy/physiopathology , Paraplegia/physiopathology , Polyneuropathies/genetics , Polyneuropathies/physiopathology , Protein Binding , Sensorimotor Cortex/metabolism , Sensorimotor Cortex/physiopathology , Spindle Apparatus/genetics , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/physiopathology , Spinocerebellar Degenerations/physiopathology
18.
Clin Genet ; 98(2): 172-178, 2020 08.
Article in English | MEDLINE | ID: mdl-32415735

ABSTRACT

UBE2A deficiency, that is, intellectual disability (ID) Nascimento type (MIM 300860), is an X-linked syndrome characterized by developmental delay, moderate to severe ID, seizures, dysmorphisms, skin anomalies, and urogenital malformations. Forty affected subjects have been reported thus far, with 31 cases having intragenic UBE2A variants. Here, we report on additional eight affected subjects from seven unrelated families who were found to be hemizygous for previously unreported UBE2A missense variants (p.Glu62Lys, p.Arg95Cys, p.Thr99Ala, and p.Arg135Trp) or small in-frame deletions (p.Val81_Ala83del, and p.Asp101del). A wide phenotypic spectrum was documented in these subjects, ranging from moderate ID associated with mild dysmorphisms to severe features including congenital heart defects (CHD), severe cognitive impairment, and pineal gland tumors. Four variants affected residues (Glu62, Arg95, Thr99 and Asp101) that contribute to stabilizing the structure of the E3 binding domain. The three-residue in-frame deletion, p.Val81_Ala83del, resulted from aberrant processing of the transcript. This variant and p.Arg135Trp mapped to regions of the protein located far from the E3 binding region, and caused variably accelerated protein degradation. By reviewing available clinical information, we revise the clinical and molecular profile of the disorder and document genotype-phenotype correlations. Pineal gland cysts/tumors, CHD and hypogammaglobulinemia emerge as recurrent features.


Subject(s)
Genetic Diseases, X-Linked/genetics , Heart Defects, Congenital/genetics , Intellectual Disability/genetics , Ubiquitin-Conjugating Enzymes/genetics , Child, Preschool , Female , Genetic Diseases, X-Linked/complications , Genetic Diseases, X-Linked/pathology , Genetic Predisposition to Disease , Heart Defects, Congenital/complications , Heart Defects, Congenital/pathology , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/pathology , Male , Pedigree , Skin Abnormalities/complications , Skin Abnormalities/genetics , Skin Abnormalities/pathology , Urogenital Abnormalities/complications , Urogenital Abnormalities/genetics , Urogenital Abnormalities/pathology
19.
Hum Mutat ; 40(6): 721-728, 2019 06.
Article in English | MEDLINE | ID: mdl-30825388

ABSTRACT

The pathogenic variants in the neuroblastoma-amplified sequence (NBAS) are associated with a clinical spectrum involving the hepatic, skeletal, ocular, and immune systems. Here, we report on two unrelated subjects with a complex phenotype solved by whole-exome sequencing, who shared a synonymous change in NBAS that was documented to affect the transcript processing and co-occurring with a truncating change. Starting from these two cases, we systematically assessed the clinical information available for all subjects with biallelic NBAS pathogenic variants (73 cases in total). We revealed a recognizable facial profile (hypotelorism, thin lips, pointed chin, and "progeroid" appearance) determined by using DeepGestalt facial recognition technology, and we provide evidence for the occurrence of genotype-phenotype correlations. Notably, severe hepatic involvement was associated with variants affecting the NBAS-Nter and Sec39 domains, whereas milder liver involvement and immunodeficiency were generally associated with variants located at the N-terminus and C-terminus of the protein. Remarkably, no patient was reported to carry two nonsense variants, suggesting lethality of complete NBAS loss-of-function.


Subject(s)
Abnormalities, Multiple/genetics , Exome Sequencing/methods , Neoplasm Proteins/genetics , Silent Mutation , Child , Child, Preschool , Female , Genetic Association Studies , Humans , Loss of Function Mutation , Male , Neoplasm Proteins/chemistry , Pedigree , Protein Domains
20.
Clin Genet ; 96(6): 585-589, 2019 12.
Article in English | MEDLINE | ID: mdl-31448411

ABSTRACT

Signal Transducer and Activator of Transcription 1 (STAT1) is a DNA-binding signal transducer that regulates transcription of specific genes in response to IFNγ and IFNα/ß stimulation. Loss-of-function mutations impairing STAT1 activity are known to confer susceptibility to intracellular bacterial and viral diseases. Conversely, the few known activating mutations of STAT1 allow predisposition to chronic mucocutaneous candidiasis disease, and occur in patients with combined immunodeficiency and defective Th1 and Th17 responses. Here, we report on a de novo gain-of-function (GoF) STAT1 mutation (c.1398C>G, p.Ser466Arg) identified by exome sequencing in an individual with brain calcification, arthritis, recurrent pericarditis, leukopenia, thrombocytopenia and low C3 levels, a phenotype resembling an interferonopathy. The Ser466Arg change affects a highly conserved residue located in the DNA binding domain of the protein and the amino acid substitution was documented to have an activating role both in vitro and in vivo. Altogether, clinical features and functional studies are compatible with hyperactivation of the Interferon pathways, highlighting a role of STAT1 GoF mutation in clinical phenotypes fitting interferonopathies.


Subject(s)
Interferons/metabolism , Mutation/genetics , STAT1 Transcription Factor/genetics , Adolescent , Child, Preschool , HEK293 Cells , Humans , Male , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL