Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Lab Invest ; 101(12): 1585-1596, 2021 12.
Article in English | MEDLINE | ID: mdl-34489559

ABSTRACT

Osteosarcoma has a guarded prognosis. A major hurdle in developing more effective osteosarcoma therapies is the lack of disease-specific biomarkers to predict risk, prognosis, or therapeutic response. Exosomes are secreted extracellular microvesicles emerging as powerful diagnostic tools. However, their clinical application is precluded by challenges in identifying disease-associated cargo from the vastly larger background of normal exosome cargo. We developed a method using canine osteosarcoma in mouse xenografts to distinguish tumor-derived from host-response exosomal messenger RNAs (mRNAs). The model allows for the identification of canine osteosarcoma-specific gene signatures by RNA sequencing and a species-differentiating bioinformatics pipeline. An osteosarcoma-associated signature consisting of five gene transcripts (SKA2, NEU1, PAF1, PSMG2, and NOB1) was validated in dogs with spontaneous osteosarcoma by real-time quantitative reverse transcription PCR (qRT-PCR), while a machine learning model assigned dogs into healthy or disease groups. Serum/plasma exosomes were isolated from 53 dogs in distinct clinical groups ("healthy", "osteosarcoma", "other bone tumor", or "non-neoplastic disease"). Pre-treatment samples from osteosarcoma cases were used as the training set, and a validation set from post-treatment samples was used for testing, classifying as "osteosarcoma detected" or "osteosarcoma-NOT detected". Dogs in a validation set whose post-treatment samples were classified as "osteosarcoma-NOT detected" had longer remissions, up to 15 months after treatment. In conclusion, we identified a gene signature predictive of molecular remissions with potential applications in the early detection and minimal residual disease settings. These results provide proof of concept for our discovery platform and its utilization in future studies to inform cancer risk, diagnosis, prognosis, and therapeutic response.


Subject(s)
Biomarkers, Tumor/metabolism , Osteosarcoma/metabolism , Animals , Cell Line, Tumor , Dogs , Exosomes/metabolism , Female , Humans , Machine Learning , Mice, Nude , Neoplasm Transplantation , Osteosarcoma/diagnosis , Primary Cell Culture , Prognosis , Stromal Cells/physiology
2.
BMC Cancer ; 17(1): 485, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28709411

ABSTRACT

BACKGROUND: The serine/threonine protein kinases ROCK1 and 2 are key RhoA-mediated regulators of cell shape and cytoskeletal dynamics. These proteins perform multiple functions in vascular endothelial cell physiology and are attractive targets for cancer therapy based on their roles as oncogenes and metastatic promoters. Given their critical functions in both of these processes, we hypothesized that molecular targeting of ROCK proteins would be exceedingly effective against vascular tumors such as hemangiomas and angiosarcomas, which are neoplasms composed of aberrant endothelial cells. METHODS: In this study, we compared ROCK1 and 2 protein expression in a large panel of benign and malignant vascular tumors to that of normal vasculature. We then utilized shRNA technology to knockdown the expression of ROCK1 and 2 in SVR tumor-forming vascular cells, and evaluated tumor size and proliferation rate in a xenograft model. Finally, we employed proteomics and metabolomics to assess how knockdown of the ROCK paralogs induced alterations in protein expression/phosphorylation and metabolite concentrations in the xenograft tumors. RESULTS: Our findings revealed that ROCK1 was overexpressed in malignant vascular tumors such as hemangioendotheliomas and angiosarcomas, and ROCK2 was overexpressed in both benign and malignant vascular tumors including hemangiomas, hemangioendotheliomas, hemangiopericytomas, and angiosarcomas. shRNA-mediated knockdown of ROCK2, but not ROCK1, in xenograft vascular tumors significantly reduced tumor size and proliferative index compared to control tumors. Proteomics and metabolomics analysis of the xenograft tumors revealed both overlapping as well as unique roles for the ROCK paralogs in regulating signal transduction and metabolite concentrations. CONCLUSIONS: Collectively, these data indicate that ROCK proteins are overexpressed in diverse vascular tumors and suggest that specific targeting of ROCK2 proteins may show efficacy against malignant vascular tumors.


Subject(s)
Neoplasms/genetics , Vascular Neoplasms/genetics , rho-Associated Kinases/genetics , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasms/pathology , RNA, Small Interfering/genetics , Signal Transduction/genetics , Transcriptional Activation/genetics , Vascular Neoplasms/classification , Vascular Neoplasms/pathology , Xenograft Model Antitumor Assays
3.
Am J Pathol ; 185(3): 717-28, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25622542

ABSTRACT

Liposarcomas, which are malignant fatty tumors, are the second most common soft-tissue sarcomas. Several histologically defined liposarcoma subtypes exist, yet little is known about the molecular pathology that drives the diversity in these tumors. We used functional genomics to classify a panel of diverse liposarcoma cell lines based on hierarchical clustering of their gene expression profiles, indicating that liposarcoma gene expression profiles and histologic classification are not directly correlated. Boolean probability approaches based on cancer-associated properties identified differential expression in multiple genes, including MYC, as potentially affecting liposarcoma signaling networks and cancer outcome. We confirmed our method with a large panel of lipomatous tumors, revealing that MYC protein expression is correlated with patient survival. These data encourage increased reliance on genomic features in conjunction with histologic features for liposarcoma clinical characterization and lay the groundwork for using Boolean-based probabilities to identify prognostic biomarkers for clinical outcome in tumor patients.


Subject(s)
Liposarcoma/genetics , Proto-Oncogene Proteins c-myc/genetics , Soft Tissue Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Genomics , Humans , Liposarcoma/mortality , Liposarcoma/pathology , Male , Middle Aged , Prognosis , Soft Tissue Neoplasms/mortality , Soft Tissue Neoplasms/pathology , Survival Rate , Transcriptome
4.
J Biol Chem ; 289(50): 34871-85, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25217645

ABSTRACT

Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for development, wound healing, and tumor progression. The VEGF pathway plays irreplaceable roles during angiogenesis, but how other signals cross-talk with and modulate VEGF cascades is not clearly elucidated. Here, we identified that Gpr126, an endothelial cell-enriched gene, plays an important role in angiogenesis by regulating endothelial cell proliferation, migration, and tube formation. Knockdown of Gpr126 in the mouse retina resulted in the inhibition of hypoxia-induced angiogenesis. Interference of Gpr126 expression in zebrafish embryos led to defects in intersegmental vessel formation. Finally, we identified that GPR126 regulated the expression of VEGFR2 by targeting STAT5 and GATA2 through the cAMP-PKA-cAMP-response element-binding protein signaling pathway during angiogenesis. Our findings illustrate that GPR126 modulates both physiological and pathological angiogenesis through VEGF signaling, providing a potential target for the treatment of angiogenesis-related diseases.


Subject(s)
Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Cell Line , Cell Movement , Cell Proliferation , Cyclic AMP/metabolism , Embryonic Development , Endothelial Cells/cytology , Endothelial Cells/drug effects , GATA2 Transcription Factor/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Gene Silencing , Humans , Mice , Neovascularization, Pathologic/genetics , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , STAT5 Transcription Factor/metabolism , Transcription, Genetic , Zebrafish/embryology
5.
BMC Clin Pathol ; 15: 18, 2015.
Article in English | MEDLINE | ID: mdl-26412983

ABSTRACT

BACKGROUND: The "stem cell theory of cancer" states that a subpopulation of cells with stem cell-like properties plays a central role in the formation, sustainment, spread, and drug resistant characteristics of malignant tumors. Recent studies have isolated distinct cell populations from infantile hemangiomas that display properties equivalent to aberrant progenitor cells, suggesting that, in addition to malignant tumors, benign tumors may also contain a stem cell-like component. METHODS: In this study, the expression levels of the embryonic stem cell reprogramming factors Oct4, Nanog, Myc, Sox2, and Klf4 were examined via immunohistochemistry in a panel of 71 benign, borderline, and malignant vascular tumors including capillary hemangioma, cavernous hemangioma, granulomatous hemangioma, venous hemangioma, hemangioendothelioma, hemangiopericytoma, and angiosarcoma. Antigenicity for each protein was quantified based on staining intensity and percentage of tissue positive for each antigen, and subsequently compared to data obtained from two control tissue sets: 10 vascular tissues and a panel of 58 various malignant sarcomas. RESULTS AND DISCUSSION: With the exception of Myc (which was only present in a subset of benign, borderline, and malignant tumors), Oct4, Nanog, Sox2, and Klf4 were detectable at variable levels across both normal and diseased tissues. Semi-quantitative evaluation of our immunohistochemical staining revealed that protein expression of Oct4, Nanog, Myc, and Sox2, but not Klf4, was significantly increased in benign, borderline, and malignant vascular tumors relative to non-diseased vascular tissue controls. Interestingly, the enhanced levels of Oct4, Nanog, Myc, and Sox2 protein were approximately equivalent between benign, borderline, and malignant vascular tumors. CONCLUSIONS: These findings provide supporting evidence that enrichment for proteins involved in pluripotency is not restricted solely to malignant tumors as is suggested by the "stem cell theory of cancer", but additionally extends to common benign vascular tumors such as hemangiomas.

6.
BMC Cancer ; 14: 81, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24511912

ABSTRACT

BACKGROUND: Preclinical and clinical studies have shown for decades that tumor cells demonstrate significantly enhanced sensitivity to "fever range" hyperthermia (increasing the intratumoral temperature to 42-45°C) than normal cells, although it is unknown why cancer cells exhibit this distinctive susceptibility. METHODS: To address this issue, mammary epithelial cells and three malignant breast cancer lines were subjected to hyperthermic shock and microarray, bioinformatics, and network analysis of the global transcription changes was subsequently performed. RESULTS: Bioinformatics analysis differentiated the gene expression patterns that distinguish the heat shock response of normal cells from malignant breast cancer cells, revealing that the gene expression profiles of mammary epithelial cells are completely distinct from malignant breast cancer lines following this treatment. Using gene network analysis, we identified altered expression of transcripts involved in mitotic regulators, histones, and non-protein coding RNAs as the significant processes that differed between the hyperthermic response of mammary epithelial cells and breast cancer cells. We confirmed our data via qPCR and flow cytometric analysis to demonstrate that hyperthermia specifically disrupts the expression of key mitotic regulators and G2/M phase progression in the breast cancer cells. CONCLUSION: These data have identified molecular mechanisms by which breast cancer lines may exhibit enhanced susceptibility to hyperthermic shock.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Genomics/methods , Hot Temperature , Hyperthermia, Induced/methods , Cell Line, Tumor , Disease Susceptibility/diagnosis , Female , Fever , Gene Regulatory Networks/genetics , Humans , MCF-7 Cells , Protein Array Analysis
7.
FASEB J ; 24(9): 3186-95, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20400538

ABSTRACT

The small GTPase RhoA and its downstream effectors, ROCK1 and ROCK2, regulate a number of cellular processes, including cell motility, proliferation, survival, and permeability. Pharmacological inhibitors of the Rho pathway reportedly block angiogenesis; however, the molecular details of this inhibition are largely unknown. We demonstrate that vascular endothelial growth factor-A (VEGF) rapidly induces RhoA activation in endothelial cells (ECs). Moreover, the pharmacological inhibition of ROCK1/2 using 10 microM Y-27632 (the IC(50) for this compound in ECs) strongly disrupts vasculogenesis in pluripotent embryonic stem cell cultures, VEGF-mediated regenerative angiogenesis in ex vivo retinal explants, and VEGF-mediated in vitro EC tube formation. Furthermore, using small interfering RNA knockdown and mouse heterozygote knockouts of ROCK1 and ROCK2, we provide data indicating that VEGF-driven angiogenesis is largely mediated through ROCK2. These data demonstrate that Rho/ROCK signaling is an important mediator in a number of angiogenic processes, including EC migration, survival, and cell permeability, and suggest that Rho/ROCK inhibition may prove useful for the treatment of angiogenesis-related disorders.


Subject(s)
Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Signal Transduction , Vascular Endothelial Growth Factor A/pharmacology , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Amides/pharmacology , Animals , Apoptosis , Blotting, Western , Cattle , Cells, Cultured , Enzyme Activation/drug effects , Humans , Mice , Microscopy, Fluorescence , Pyridines/pharmacology , RNA, Small Interfering , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , rho-Associated Kinases/genetics
8.
J Cell Biochem ; 111(3): 543-53, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20626031

ABSTRACT

Healthy cells, as well as benign and malignant tumors, depend upon the body's blood supply to bring in oxygen and nutrients and carry away waste products. Using this property against tumors, anti-angiogenic therapy targets the tumor vasculature with the aim of starving the tumor, and has demonstrated exceptional clinical efficacy against a number of tumors. This review discusses the current state of knowledge regarding anti-angiogenic therapies presently available to patients, and garners from both preclinical and clinical literature the benefits and side effects associated with anti-angiogenic therapies, the unfortunate mechanisms of acquired resistance to these novel therapeutics, and highlights promising next generation anti-angiogenics that may overcome the limitations encountered with first generation therapies.


Subject(s)
Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Angiogenesis Inhibitors/therapeutic use , Drug Resistance, Neoplasm , Humans , Neoplasms/blood supply
9.
Front Oncol ; 10: 614288, 2020.
Article in English | MEDLINE | ID: mdl-33598432

ABSTRACT

Angiosarcoma is a rare cancer of blood vessel-forming cells with a high patient mortality and few treatment options. Although chemotherapy often produces initial clinical responses, outcomes remain poor, largely due to the development of drug resistance. We previously identified a subset of doxorubicin-resistant cells in human angiosarcoma and canine hemangiosarcoma cell lines that exhibit high lysosomal accumulation of doxorubicin. Hydrophobic, weak base chemotherapeutics, like doxorubicin, are known to sequester within lysosomes, promoting resistance by limiting drug accessibility to cellular targets. Drug synergy between the beta adrenergic receptor (ß-AR) antagonist, propranolol, and multiple chemotherapeutics has been documented in vitro, and clinical data have corroborated the increased therapeutic potential of propranolol with chemotherapy in angiosarcoma patients. Because propranolol is also a weak base and accumulates in lysosomes, we sought to determine whether propranolol enhanced doxorubicin cytotoxicity via antagonism of ß-ARs or by preventing the lysosomal accumulation of doxorubicin. ß-AR-like immunoreactivities were confirmed in primary tumor tissues and cell lines; receptor function was verified by monitoring downstream signaling pathways of ß-ARs in response to receptor agonists and antagonists. Mechanistically, propranolol increased cytoplasmic doxorubicin concentrations in sarcoma cells by decreasing the lysosomal accumulation and cellular efflux of this chemotherapeutic agent. Equivalent concentrations of the receptor-active S-(-) and -inactive R-(+) enantiomers of propranolol produced similar effects, supporting a ß-AR-independent mechanism. Long-term exposure of hemangiosarcoma cells to propranolol expanded both lysosomal size and number, yet cells remained sensitive to doxorubicin in the presence of propranolol. In contrast, removal of propranolol increased cellular resistance to doxorubicin, underscoring lysosomal doxorubicin sequestration as a key mechanism of resistance. Our results support the repurposing of the R-(+) enantiomer of propranolol with weak base chemotherapeutics to increase cytotoxicity and reduce the development of drug-resistant cell populations without the cardiovascular and other side effects associated with antagonism of ß-ARs.

10.
Oncoscience ; 6(7-8): 367, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31608300

ABSTRACT

[This corrects the article DOI: 10.18632/oncoscience.472.].

11.
Mol Cell Biol ; 25(24): 11089-101, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16314529

ABSTRACT

Rho family guanine nucleotide exchange factors (GEFs) regulate diverse cellular processes including cytoskeletal reorganization, cell adhesion, and differentiation via activation of the Rho GTPases. However, no studies have yet implicated Rho-GEFs as molecular regulators of the mesenchymal cell fate decisions which occur during development and repair of tissue damage. In this study, we demonstrate that the steady-state protein level of the Rho-specific GEF GEFT is modulated during skeletal muscle regeneration and that gene transfer of GEFT into cardiotoxin-injured mouse tibialis anterior muscle exerts a powerful promotion of skeletal muscle regeneration in vivo. In order to molecularly characterize this regenerative effect, we extrapolate the mechanism of action by examining the consequence of GEFT expression in multipotent cell lines capable of differentiating into a number of cell types, including muscle and adipocyte lineages. Our data demonstrate that endogenous GEFT is transcriptionally upregulated during myogenic differentiation and downregulated during adipogenic differentiation. Exogenous expression of GEFT promotes myogenesis of C2C12 cells via activation of RhoA, Rac1, and Cdc42 and their downstream effector proteins, while a dominant-negative mutant of GEFT inhibits this process. Moreover, we show that GEFT inhibits insulin-induced adipogenesis in 3T3L1 preadipocytes. In summary, we provide the first evidence that the Rho family signaling pathways act as potential regulators of skeletal muscle regeneration and provide the first reported molecular mechanism illustrating how a mammalian Rho family GEF controls this process by modulating mesenchymal cell fate decisions.


Subject(s)
Adipogenesis , Guanine Nucleotide Exchange Factors/metabolism , Muscle Development , Muscle, Skeletal/physiology , Regeneration , 3T3-L1 Cells , Adipogenesis/genetics , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Proliferation , Cytoplasm/chemistry , Enzyme Activation , Gene Transfer Techniques , Guanine Nucleotide Exchange Factors/analysis , Guanine Nucleotide Exchange Factors/genetics , Humans , Mice , Muscle Development/genetics , MyoD Protein/metabolism , RNA, Messenger/analysis , RNA, Messenger/metabolism , Regeneration/genetics , Rho Guanine Nucleotide Exchange Factors , Signal Transduction , Transcription, Genetic , Up-Regulation , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
12.
Oncoscience ; 5(9-10): 264-268, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30460329

ABSTRACT

Angiosarcoma is the most common malignant cardiac tumor. Cardiac angiosarcoma is a highly lethal neoplasm that is largely resistant to conventional anti-cancer therapy. Mean survival of patients with cardiac angiosarcoma is only 4 months, and almost all patients will succumb to the disease within 1 year. The beta blocker propranolol is an emerging therapy against angiosarcoma. When combined with conventional therapies, propranolol increases progression free and overall survival in patients with this tumor type. It is currently unknown if propranolol is capable of showing anti-cancer efficacy as a single agent therapy. We report a case of a 61 year old woman diagnosed with primary cardiac angiosarcoma and liver and lung metastases. This patient chose to decline conventional therapy, and instead was prescribed the beta blocker propranolol as a single agent treatment. After 12 months, the mediastinal mass substantially debulked and decreased in size, and the metastatic nodules stabilized or resolved with no evidence of hyper-metabolic activity on PET-CT. This is the first reported data showing long term efficacy of the beta blocker propranolol as a single agent therapy against angiosarcoma.

13.
Ecancermedicalscience ; 12: ed82, 2018.
Article in English | MEDLINE | ID: mdl-30034523

ABSTRACT

The non-selective beta-blocker propranolol is a leading candidate for repurposing as a novel anti-cancer agent. Emerging evidence, including human data, suggests that there are multiple mechanisms of action particularly relevant to breast cancer. This editorial reviews a number of recent studies that show it has anti-metastatic activity that warrants clinical investigation, including investigation as a potential perioperative therapy in breast cancer.

14.
Mol Clin Oncol ; 9(3): 243-254, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30155245

ABSTRACT

Symptoms of depression are present in over half of all cancer patients, and selective serotonin reuptake inhibitor (SSRI) anti-depressant medications are prescribed to nearly a quarter of these individuals in order to cope with their disease. Previous studies have provided evidence that elevated serotonin (5-HT) and serotonin receptor levels may contribute to oncogenic progression, yet little is known regarding the mechanism by which this occurs. The data demonstrated that serotonin receptor mRNAs and proteins are expressed across diverse cancer types, and that serotonin stimulation of tumor cells activates oncogenic signaling mediators including components of the AKT, CREB, GSK3, and MAPK pathways. Selective pharmacological inhibition of the seven known classes of 5-HT receptors in sarcoma and breast cancer cells resulted in dose dependent decreases in tumor cell viability, activation of the p53 DNA damage pathway, suppression of MAPK activity, and significantly reduced tumor volume in an in ovo model. Based on a retrospective clinical analysis of 419 patients diagnosed with breast cancer, we discovered that use of SSRIs was associated with a 2.3-fold increase in tumor proliferation rates for late stage patients based on their Ki-67 index (P=0.03). These data provide evidence that serotonin signaling pathways, which treating oncologists often pharmacologically target to assist cancer patients to psychologically cope with their illness, activate signaling pathways known to promote tumor growth and survival.

15.
Oncoscience ; 5(3-4): 109-119, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29854879

ABSTRACT

Patients with metastatic angiosarcoma undergoing chemotherapy, radiation, and/or surgery experience a median progression free survival of less than 6 months and a median overall survival of less than 12 months. Given the aggressive nature of this cancer, angiosarcoma clinical responses to chemotherapy or targeted therapeutics are generally very poor. Inhibition of beta adrenergic receptor (ß-AR) signaling has recently been shown to decrease angiosarcoma tumor cell viability, abrogate tumor growth in mouse models, and decrease proliferation rates in preclinical and clinical settings. In the current study we used cell and animal tumor models to show that ß-AR antagonism abrogates mitogenic signaling and reduces angiosarcoma tumor cell viability, and these molecular alterations translated into patient tumors. We demonstrated that non-selective ß-AR antagonists are superior to selective ß-AR antagonists at inhibiting angiosarcoma cell viability. A prospective analysis of non- selective ß-AR antagonists in a single arm clinical study of metastatic angiosarcoma patients revealed that incorporation of either propranolol or carvedilol into patients' treatment regimens leads to a median progression free and overall survival of 9 and 36 months, respectively. These data suggest that incorporation of non-selective ß-AR antagonists into existing therapies against metastatic angiosarcoma can enhance clinical outcomes.

16.
Mol Vis ; 13: 1144-53, 2007 Jul 13.
Article in English | MEDLINE | ID: mdl-17653061

ABSTRACT

PURPOSE: The small GTPases function as "molecular switches" by binding and releasing GTP to mediate downstream signaling effects. The Rho-family of GTPases is central in modulating cell differentiation and cytoskeletal changes. Since eye development requires comprehensive morphogenetic movements and extensive cellular differentiation, we hypothesize that different small GTPases may play important roles during morphogenesis of eye development. To explore this possibility, we examined the expression patterns of three major Rho-GTPases: RhoA, Rac1, and Cdc42 in embryonic, postnatal (one day after birth), and adult (two-month old) mouse eye. METHODS: Various ocular tissues were collected from embryonic, postnatal, and adult C57BL/6 mice. Western blots were conducted using total proteins extracted from cornea, retina, lens epithelial cells, and lens fiber cells of the adult mice or different fractions of rat lenses. Immunohistochemistry (IHC) was performed with 6 mum thick sections cut through the eye ball region of 11.5 pc, 14.5 pc, 17.5 pc, postnatal, and adult mice. Parallel controls were run using the rabbit preimmune and GTPase-specific antibodies blocked with saturating levels of corresponding peptide antigen. RESULTS: In the embryonic mouse eye, RhoA and Cdc42 expressions were initially detectable in all three compartments at 11.5 pc. However, Rac1 became easily detectable in these compartments at 14.5 pc. Increased levels of RhoA, Rac1, and Cdc42 were detected in the three compartments at 17.5 pc and the strongest signals for RhoA, Rac1, and Cdc42 were observed in the primary lens fiber cells at 17.5 pc. In the postnatal mouse eye, the three small GTPases were significantly expressed in both endothelial and epithelial cells of mouse cornea, epithelial cells of the ocular lens, photoreceptors, horizontal/amacrine/Muller's cells, and some ganglian cells of the retina. Much lower level of expression was observed in the corneal stroma fibroblasts, lens fiber cells, and the inner and outer plexiform layers of the mouse retina. In the adult mouse eye, all three Rho-GTPases were expressed in corneal epithelial cells and retina. However, only RhoA protein was detected in corneal endothelial cells and Rac1 protein detected in the ocular lens. CONCLUSIONS: The strong expression of the three small GTPases in the cornea, lens, and retina of mouse eye at embryonic 17.5 pc and postnatal stage suggests their important functions for the morphogenesis of the different compartments of the mouse eye. Particularly, high levels of expression of RhoA, Rac1, and Cdc42 in embryonic lens fiber cells suggest their involvement in differentiation of primary lens fiber cells. In the adult mouse eye, all three Rho-GTPases seem to be involved in differentiation of corneal epithelial cells and retina, however, RhoA alone may be required for endothelial cell differentiation and Rac1 likely plays an important role in supporting continuous lens growth and maintenance of lens transparency.


Subject(s)
Aging/metabolism , Eye/embryology , Eye/enzymology , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Animals, Newborn , Cornea/embryology , Cornea/metabolism , Embryo, Mammalian/enzymology , Eye/growth & development , Immunohistochemistry , Lens, Crystalline/embryology , Lens, Crystalline/metabolism , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Retina/embryology , Retina/metabolism , Tissue Distribution
17.
Oncoscience ; 4(7-8): 95-105, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28966942

ABSTRACT

Based largely on retrospective analyses and a handful of prospective case reports, pharmacological inhibition of the beta adrenergic receptors using beta blockers has shown clinical anti-cancer efficacy in reproductive cancers, as well as angiosarcoma and multiple myeloma. Because of the potential promise of beta blockers as an adjunct to standard anti-cancer therapy, it is imperative to identify other tumor types expressing beta adrenergic (ß-AR) receptors so future preclinical and clinical studies can be directed at the most promising tumor targets. We performed immunohistochemical detection of ß1-AR, ß2-AR, and ß3-AR across 29 of the most common human cancer types (389 tissues total) and 19 matching non-diseased controls (100 tissues total). Our analysis revealed all three ß-AR receptors were expressed most strongly in melanoma relative to other cancer types. Other malignancies that revealed relatively higher levels of ß-AR receptors were esophagus, pancreas, kidney, and lung cancers. Moreover, particular ß-AR receptors exhibited significant overexpression in tumor tissue relative to their matching normal tissue in urogenital/reproductive malignancies including breast, endometrium, ovarian, and urothelial cancer, as well as colon, lung, and thyroid cancer. This study identifies several cancer types expressing the ß-AR receptors which should be evaluated in future studies for susceptibility to beta blockade.

18.
Pathology ; 49(3): 292-296, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28238417

ABSTRACT

Programmed cell death 1 (PD-1) and its ligands have been shown to play a significant role in evasion of malignant tumour cells from the immune system. Last year, the United States Food and Drug Administration (FDA) approved anti-PD-1 inhibitors for treatment of non-small cell lung carcinoma and recently has approved anti-PD-L1 blocker for treatment of metastatic urothelial cell carcinoma. However, the role that the immune system might have on benign tumours including vascular anomalies has received less attention. In this study, we evaluated PD-1 and PD-L1 expression on two benign vascular anomalies: infantile haemangiomas and venous malformations. Tissue microarrays (TMAs) from these two entities were stained for PD-1 and PD-L1 antibodies. Blood vessels from normal tissue were used as control. The endothelial cells in both infantile haemangioma and venous malformation showed high expression of PD-1 but were negative for PD-L1. Endothelial cells within the blood vessels in normal tissues were negative for both PD-1 and PD-L1. Our results showed over-expression of PD-1 in subsets of vascular anomalies, while PD-L1 was negative. This would raise the possibility of immunotherapy in benign vascular tumour when other options are exhausted.


Subject(s)
Antibodies/therapeutic use , B7-H1 Antigen/metabolism , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/metabolism , Urinary Bladder Neoplasms/drug therapy , Vascular Neoplasms/drug therapy , B7-H1 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Immunotherapy/methods , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Programmed Cell Death 1 Receptor/immunology
19.
Pathology ; 49(5): 506-513, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28688724

ABSTRACT

PD-1 and its ligands have been shown to play a significant role in evasion of malignant tumour cells from the immune system. Last year, the Unites States Food and Drug Administration (FDA) approved anti-PD-1 inhibitors for treatment of non-small cell lung carcinoma and recently expanded the use of immunotherapy for metastatic urothelial cell carcinoma and Hodgkin lymphoma. However, studies on expression of PD-1 and its ligand in malignant bone and soft tissue sarcoma are sparse. In this study, we evaluated PD-1 and PD-L1 expression on variants of liposarcomas and rhabdomyosarcomas, osteosarcomas and chondrosarcomas. Tissue microarrays (TMAs) for liposarcomas (well differentiated, myxoid/round cell, and pleomorphic), rhabdomyosarcomas (alveolar, embryonal, pleomorphic, and spindle cell), conventional osteosarcomas and chondrosarcomas were stained for PD-1 and PD-L1 antibodies. Adipose tissue, skeletal muscle, bone, osteochondroma and lipoma were used as control and benign counterparts. Western blot was performed to evaluate expression of PD-1 and PD-L1 in four sarcoma cell lines. Osteosarcomas, chondrosarcomas, and all variants of liposarcomas and rhabdomyosarcomas over-expressed PD-1 relative to normal tissue. Expression of PD-1 in rhabdomyosarcomas was associated with higher tumour stage. Only one case of pleomorphic liposarcoma, one case of pleomorphic rhabdomyosarcoma and two cases of alveolar rhabdomyosarcomas were positive for PD-L1. Normal adipose tissue, skeletal muscle, and bone were negative for both PD-1 and PD-L1 and lipomas and osteochondroma weakly expressed PD-1 but not PD-L1. Western blot confirmed the presence of PD-1 protein in all four sarcoma cell lines. Overall, our results showed cytoplasmic expression of PD-1 in the bone and soft tissue sarcomas, while PD-L1 was negative. Whether these data are an indication for effectiveness of immunotherapy in the management of malignant bone and soft tissue sarcomas remains to be elucidated.


Subject(s)
B7-H1 Antigen/metabolism , Neoplasms, Bone Tissue/metabolism , Programmed Cell Death 1 Receptor/metabolism , Sarcoma/metabolism , B7-H1 Antigen/genetics , Cell Line, Tumor , Chondrosarcoma/metabolism , Chondrosarcoma/pathology , Female , Humans , Liposarcoma/metabolism , Liposarcoma/pathology , Male , Neoplasms, Bone Tissue/pathology , Osteosarcoma/metabolism , Osteosarcoma/pathology , Programmed Cell Death 1 Receptor/genetics , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Sarcoma/pathology , Tissue Array Analysis
20.
Mol Clin Oncol ; 7(3): 315-321, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28781809

ABSTRACT

Benign lipomas and well-differentiated liposarcomas share many histological and molecular features. Due to their similarities, patients with these lipomatous tumors are misdiagnosed up to 40% of the time following radiological detection, up to 17% of the time following histological examination, and in as many as 15% of cases following fluorescent in situ hybridization for chromosomal anomalies. Incorrect classification of these two tumor types leads to increased costs to the patient and delayed accurate diagnoses. In this study, we used genomics analysis to identify several genes whose mRNA expression patterns were significantly altered between lipomas and well-differentiated liposarcomas. We confirmed our findings at the protein level using a panel of 30 human lipomatous tumors, revealing that C4BPB, class II, major histocompatibility complex, CIITA, EPHB2, HOXB7, GLS2, RBBP5, and regulator of RGS2 protein levels were increased in well-differentiated liposarcomas compared to lipomas. We developed a multi-protein model of these markers to increase discriminatory ability, finding the combined expression model with CIITA and RGS2 provided a high ability (AUC=0.93) to differentiate between lipomas and well-differentiated liposarcomas with sensitivity at 83.3% and specificity at 90.9%.

SELECTION OF CITATIONS
SEARCH DETAIL