Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Bioinformatics ; 21(1): 272, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32611376

ABSTRACT

BACKGROUND: Chromatin 3D conformation plays important roles in regulating gene or protein functions. High-throughout chromosome conformation capture (3C)-based technologies, such as Hi-C, have been exploited to acquire the contact frequencies among genomic loci at genome-scale. Various computational tools have been proposed to recover the underlying chromatin 3D structures from in situ Hi-C contact map data. As connected residuals in a polymer, neighboring genomic loci have intrinsic mutual dependencies in building a 3D conformation. However, current methods seldom take this feature into account. RESULTS: We present a method called ShNeigh, which combines the classical MDS technique with local dependence of neighboring loci modeled by a Gaussian formula, to infer the best 3D structure from noisy and incomplete contact frequency matrices. We validated ShNeigh by comparing it to two typical distance-based algorithms, ShRec3D and ChromSDE. The comparison results on simulated Hi-C dataset showed that, while keeping the high-speed nature of classical MDS, ShNeigh can recover the true structure better than ShRec3D and ChromSDE. Meanwhile, ShNeigh is more robust to data noise. On the publicly available human GM06990 Hi-C data, we demonstrated that the structures reconstructed by ShNeigh are more reproducible between different restriction enzymes than by ShRec3D and ChromSDE, especially at high resolutions manifested by sparse contact maps, which means ShNeigh is more robust to signal coverage. CONCLUSIONS: Our method can recover stable structures in high noise and sparse signal settings. It can also reconstruct similar structures from Hi-C data obtained using different restriction enzymes. Therefore, our method provides a new direction for enhancing the reconstruction quality of chromatin 3D structures.


Subject(s)
Chromatin/chemistry , Genomics/methods , Algorithms , Chromosomes/chemistry , Chromosomes/genetics , Genetic Loci , Humans , Molecular Conformation , User-Computer Interface
2.
Phys Chem Chem Phys ; 21(33): 18170-18178, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31389421

ABSTRACT

Half-metallic materials have gained a lot of attention because of their unique properties and applications in spintronic devices. Despite the fact that these materials have been studied by several research groups there are very limited studies on their heterostructure (HS) systems. In the current study we have investigated the electronic and magnetic properties of (LaAlO3)6.5/(SrTiO3)2.5(111) HS using density functional theory (DFT) calculations. We demonstrate that the system exhibits a 100% spin-polarized two-dimensional electron gas (2DEG) which is extremely confined to the Ti 3d orbitals of the SrTiO3 layers. In particular, this system can keep its half-metallic properties under different in-plane strains from -3 to 2%. This property proves that this material has relatively stable half-metallic properties. In addition, the conducting and magnetic ground states of the system can also be tailored by changing in-plane strain and interfacial cation intermixing of La and Sr (Sr ⇔ La intermixing). By increasing the in-plane lattice parameters, this system has the ability to evolve from a nonmagnetic to a ferromagnetic metal and then to a half-metal and by further increasing the in-plane lattice parameter it becomes a ferromagnetic insulator. Sr ⇔ La intermixing can destroy the original half-metallic properties and the system exhibits an AFM Mott-type insulator phase. Our results demonstrate that the system has high potential for application in the field of spintronics, and opens the prospect of using LaAlO3/SrTiO3(111) HSs to explore quantum phase transitions.

3.
J Phys Chem Lett ; 13(2): 614-621, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35019650

ABSTRACT

The spin-dependent polaron dynamics in organic ferromagnets under driven electric fields are investigated by using the extended Su-Schrieffer-Heeger (SSH) model coupled with a nonadiabatic dynamics method. It is found that the spin-down polaron with the same spin orientation as the radicals drifts faster than the spin-up one under the same driven electric field. In an applicable range of driven electric fields, the velocity of the spin-down polaron is about 3.4 times that of the spin-up one. The dynamical property of the polaron with each spin (up or down) is asymmetric upon the reversal of the driven electric fields. The diverse dynamical properties of polarons with specific spins can be attributed to the spin nondegenerate polaron energy levels, the dipole moment generated by the asymmetrical polaron charge distributions and the strong electron-lattice coupling in organic ferromagnets. Our findings are expected to be useful for improving organic ferromagnet based spintronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL