Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Immunity ; 54(11): 2497-2513.e9, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34562377

ABSTRACT

Innate-like T cell populations expressing conserved TCRs play critical roles in immunity through diverse developmentally acquired effector functions. Focusing on the prototypical lineage of invariant natural killer T (iNKT) cells, we sought to dissect the mechanisms and timing of fate decisions and functional effector differentiation. Utilizing induced expression of the semi-invariant NKT cell TCR on double positive thymocytes, an initially highly synchronous wave of iNKT cell development was triggered by brief homogeneous TCR signaling. After reaching a uniform progenitor state characterized by IL-4 production potential and proliferation, effector subsets emerged simultaneously, but then diverged toward different fates. While NKT17 specification was quickly completed, NKT1 cells slowly differentiated and expanded. NKT2 cells resembled maturing progenitors, which gradually diminished in numbers. Thus, iNKT subset diversification occurs in dividing progenitor cells without acute TCR input but utilizes multiple active cytokine signaling pathways. These data imply a two-step model of iNKT effector differentiation.


Subject(s)
Cytokines/metabolism , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Biomarkers , Cell Differentiation/immunology , Lymphocyte Activation/immunology
3.
Nat Immunol ; 17(5): 593-603, 2016 May.
Article in English | MEDLINE | ID: mdl-26950238

ABSTRACT

Persistent viral infections are characterized by the simultaneous presence of chronic inflammation and T cell dysfunction. In prototypic models of chronicity--infection with human immunodeficiency virus (HIV) or lymphocytic choriomeningitis virus (LCMV)--we used transcriptome-based modeling to reveal that CD4(+) T cells were co-exposed not only to multiple inhibitory signals but also to tumor-necrosis factor (TNF). Blockade of TNF during chronic infection with LCMV abrogated the inhibitory gene-expression signature in CD4(+) T cells, including reduced expression of the inhibitory receptor PD-1, and reconstituted virus-specific immunity, which led to control of infection. Preventing signaling via the TNF receptor selectively in T cells sufficed to induce these effects. Targeted immunological interventions to disrupt the TNF-mediated link between chronic inflammation and T cell dysfunction might therefore lead to therapies to overcome persistent viral infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Tumor Necrosis Factor-alpha/immunology , Adolescent , Adult , Aged , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Flow Cytometry , HEK293 Cells , HIV/physiology , HIV Infections/genetics , HIV Infections/virology , Host-Pathogen Interactions/immunology , Humans , Immunoblotting , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Oligonucleotide Array Sequence Analysis , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/immunology , Receptors, Tumor Necrosis Factor/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome/drug effects , Transcriptome/genetics , Transcriptome/immunology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Young Adult
4.
Nat Immunol ; 16(9): 950-60, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26214742

ABSTRACT

The modification of proteins by ubiquitin has a major role in cells of the immune system and is counteracted by various deubiquitinating enzymes (DUBs) with poorly defined functions. Here we identified the ubiquitin-specific protease USP8 as a regulatory component of the T cell antigen receptor (TCR) signalosome that interacted with the adaptor Gads and the regulatory molecule 14-3-3ß. Caspase-dependent processing of USP8 occurred after stimulation of the TCR. T cell-specific deletion of USP8 in mice revealed that USP8 was essential for thymocyte maturation and upregulation of the gene encoding the cytokine receptor IL-7Rα mediated by the transcription factor Foxo1. Mice with T cell-specific USP8 deficiency developed colitis that was promoted by disturbed T cell homeostasis, a predominance of CD8(+) γδ T cells in the intestine and impaired regulatory T cell function. Collectively, our data reveal an unexpected role for USP8 as an immunomodulatory DUB in T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Endopeptidases/immunology , Endosomal Sorting Complexes Required for Transport/immunology , Thymocytes/immunology , Ubiquitin Thiolesterase/immunology , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Colitis/genetics , Colitis/immunology , Endopeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Forkhead Box Protein O1 , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Homeostasis , Humans , Jurkat Cells , Mice , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Interleukin-7/immunology , Receptors, Interleukin-7/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymocytes/metabolism , Ubiquitin Thiolesterase/genetics
5.
Cell ; 150(1): 194-206, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22770220

ABSTRACT

The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor ß (PDGFRß). PDGFRß-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRß(+)-derived cells abolished FDC, indicating that FDC originate from PDGFRß(+) cells. Lymphotoxin-α-overexpressing prion protein (PrP)(+) kidneys developed PrP(+) FDC after transplantation into PrP(-) mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRß(+) stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin ß receptor (LTßR)(-) kidney capsules, differentiated into Mfge8(+)CD21/35(+)FcγRIIß(+)PrP(+) FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRß(+) FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation.


Subject(s)
Blood Vessels/cytology , Dendritic Cells, Follicular/cytology , Spleen/cytology , Stem Cells/cytology , Animals , B-Lymphocytes/immunology , Dendritic Cells, Follicular/immunology , Dendritic Cells, Follicular/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Inflammation/pathology , Killer Cells, Natural/immunology , Mice , Receptor, Platelet-Derived Growth Factor beta/metabolism , Specific Pathogen-Free Organisms , Spleen/metabolism
6.
Proc Natl Acad Sci U S A ; 121(11): e2318657121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38446855

ABSTRACT

Viral mimicry of host cell structures has been postulated to curtail the B cell receptor (BCR) repertoire against persisting viruses through tolerance mechanisms. This concept awaits, however, experimental testing in a setting of natural virus-host relationship. We engineered mouse models expressing a monoclonal BCR specific for the envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV), a naturally persisting mouse pathogen. When the heavy chain of the LCMV-neutralizing antibody KL25 was paired with its unmutated ancestor light chain, most B cells underwent receptor editing, a behavior reminiscent of autoreactive clones. In contrast, monoclonal B cells expressing the same heavy chain in conjunction with the hypermutated KL25 light chain did not undergo receptor editing but exhibited low levels of surface IgM, suggesting that light chain hypermutation had lessened KL25 autoreactivity. Upon viral challenge, these IgMlow cells were not anergic but up-regulated IgM, participated in germinal center reactions, produced antiviral antibodies, and underwent immunoglobulin class switch as well as further affinity maturation. These studies on a persisting virus in its natural host species suggest that central tolerance mechanisms prune the protective antiviral B cell repertoire.


Subject(s)
B-Lymphocytes , Central Tolerance , Animals , Mice , Antibodies, Viral , Lymphocytic choriomeningitis virus , Antiviral Agents , Immunoglobulin M
7.
EMBO J ; 40(23): e108605, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34622466

ABSTRACT

The immune cells of the central nervous system (CNS) comprise parenchymal microglia and at the CNS border regions meningeal, perivascular, and choroid plexus macrophages (collectively called CNS-associated macrophages, CAMs). While previous work has shown that microglial properties depend on environmental signals from the commensal microbiota, the effects of microbiota on CAMs are unknown. By combining several microbiota manipulation approaches, genetic mouse models, and single-cell RNA-sequencing, we have characterized CNS myeloid cell composition and function. Under steady-state conditions, the transcriptional profiles and numbers of choroid plexus macrophages were found to be tightly regulated by complex microbiota. In contrast, perivascular and meningeal macrophages were affected to a lesser extent. An acute perturbation through viral infection evoked an attenuated immune response of all CAMs in germ-free mice. We further assessed CAMs in a more chronic pathological state in 5xFAD mice, a model for Alzheimer's disease, and found enhanced amyloid beta uptake exclusively by perivascular macrophages in germ-free 5xFAD mice. Our results aid the understanding of distinct microbiota-CNS macrophage interactions during homeostasis and disease, which could potentially be targeted therapeutically.


Subject(s)
Alzheimer Disease/immunology , Bacteria/growth & development , Central Nervous System/immunology , Homeostasis , Macrophages/immunology , Myeloid Cells/immunology , Alzheimer Disease/genetics , Alzheimer Disease/microbiology , Alzheimer Disease/pathology , Animals , Bacteria/classification , Bacteria/metabolism , Central Nervous System/metabolism , Central Nervous System/microbiology , Central Nervous System/pathology , Female , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Microbiota , Myeloid Cells/metabolism , Myeloid Cells/microbiology , Myeloid Cells/pathology , Transcriptome
9.
Nature ; 562(7725): 69-75, 2018 10.
Article in English | MEDLINE | ID: mdl-30209397

ABSTRACT

Primary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and responses to therapy. However, the regulatory molecules and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here we show that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumorigenesis. Whereas a necroptosis-associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes containing identical oncogenic drivers give rise to HCC if they are surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of mouse HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage-commitment factors, a function that is conserved in humans. Together, our results provide insight into lineage commitment in liver tumorigenesis, and explain molecularly why common liver-damaging risk factors can lead to either HCC or ICC.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular/pathology , Cell Lineage , Cholangiocarcinoma/pathology , Liver Neoplasms/pathology , Necrosis , Tumor Microenvironment , Animals , Apoptosis/genetics , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Cell Differentiation , Cell Lineage/genetics , Cholangiocarcinoma/genetics , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Cytokines/metabolism , DNA Transposable Elements/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Epigenesis, Genetic/genetics , Female , Gene Expression Profiling , Genes, myc , Genes, ras , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Neoplasms/genetics , Male , Mice , Mosaicism , Necrosis/genetics , Proto-Oncogene Proteins c-akt/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Nature ; 564(7735): E9, 2018 12.
Article in English | MEDLINE | ID: mdl-30410124

ABSTRACT

In this Article, the pCaMIN construct consisted of 'mouse MYC and mouse NrasG12V' instead of 'mouse Myc and human NRASG12V; and the pCAMIA construct consisted of 'mouse Myc and human AKT1' instead of 'mouse Myc and Akt1' this has been corrected online.

11.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34518373

ABSTRACT

Dendritic cells (DC), macrophages, and monocytes, collectively known as mononuclear phagocytes (MPs), critically control tissue homeostasis and immune defense. However, there is a paucity of models allowing to selectively manipulate subsets of these cells in specific tissues. The steady-state adult kidney contains four MP subsets with Clec9a-expression history that include the main conventional DC1 (cDC1) and cDC2 subtypes as well as two subsets marked by CD64 but varying levels of F4/80. How each of these MP subsets contributes to the different phases of acute kidney injury and repair is unknown. We created a mouse model with a Cre-inducible lox-STOP-lox-diphtheria toxin receptor cassette under control of the endogenous CD64 locus that allows for diphtheria toxin-mediated depletion of CD64-expressing MPs without affecting cDC1, cDC2, or other leukocytes in the kidney. Combined with specific depletion of cDC1 and cDC2, we revisited the role of MPs in cisplatin-induced kidney injury. We found that the intrinsic potency reported for CD11c+ cells to limit cisplatin toxicity is specifically attributed to CD64+ MPs, while cDC1 and cDC2 were dispensable. Thus, we report a mouse model allowing for selective depletion of a specific subset of renal MPs. Our findings in cisplatin-induced injury underscore the value of dissecting the functions of individual MP subsets in kidney disease, which may enable therapeutic targeting of specific immune components in the absence of general immunosuppression.


Subject(s)
Acute Kidney Injury/prevention & control , Dendritic Cells/immunology , Heparin-binding EGF-like Growth Factor/metabolism , Macrophages/immunology , Monocytes/immunology , Phagocytes/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Antineoplastic Agents/toxicity , Cisplatin/toxicity , Dendritic Cells/metabolism , Dendritic Cells/pathology , Female , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology , Phagocytes/cytology , Receptors, IgG
12.
Glia ; 71(3): 616-632, 2023 03.
Article in English | MEDLINE | ID: mdl-36394300

ABSTRACT

In the central nervous system (CNS), insulin-like growth factor 1 (IGF-1) regulates myelination by oligodendrocyte (ODC) precursor cells and shows anti-apoptotic properties in neuronal cells in different in vitro and in vivo systems. Previous work also suggests that IGF-1 protects ODCs from cell death and enhances remyelination in models of toxin-induced and autoimmune demyelination. However, since evidence remains controversial, the therapeutic potential of IGF-1 in demyelinating CNS conditions is unclear. To finally shed light on the function of IGF1-signaling for ODCs, we deleted insulin-like growth factor 1 receptor (IGF1R) specifically in mature ODCs of the mouse. We found that ODC survival and myelin status were unaffected by the absence of IGF1R until 15 months of age, indicating that IGF-1 signaling does not play a major role in post-mitotic ODCs during homeostasis. Notably, the absence of IGF1R did neither affect ODC survival nor myelin status upon cuprizone intoxication or induction of experimental autoimmune encephalomyelitis (EAE), models for toxic and autoimmune demyelination, respectively. Surprisingly, however, the absence of IGF1R from ODCs protected against clinical neuroinflammation in the EAE model. Together, our data indicate that IGF-1 signaling is not required for the function and survival of mature ODCs in steady-state and disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Insulin-Like Growth Factor I , Receptor, IGF Type 1 , Animals , Mice , Cuprizone , Encephalomyelitis, Autoimmune, Experimental/metabolism , Insulin-Like Growth Factor I/metabolism , Mice, Inbred C57BL , Myelin Sheath/metabolism , Neuroinflammatory Diseases , Oligodendroglia/metabolism , Receptor, IGF Type 1/metabolism
13.
Immunity ; 41(5): 722-36, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25464853

ABSTRACT

Regulatory T (Treg) cells maintain immune homeostasis and prevent inflammatory and autoimmune responses. During development, thymocytes bearing a moderately self-reactive T cell receptor (TCR) can be selected to become Treg cells. Several observations suggest that also in the periphery mature Treg cells continuously receive self-reactive TCR signals. However, the importance of this inherent autoreactivity for Treg cell biology remains poorly defined. To address this open question, we genetically ablated the TCR of mature Treg cells in vivo. These experiments revealed that TCR-induced Treg lineage-defining Foxp3 expression and gene hypomethylation were uncoupled from TCR input in mature Treg cells. However, Treg cell homeostasis, cell-type-specific gene expression and suppressive function critically depend on continuous triggering of their TCR.


Subject(s)
Autoimmunity/immunology , Forkhead Transcription Factors/biosynthesis , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation/immunology , Cell Lineage/immunology , DNA Methylation/immunology , DNA-Binding Proteins/genetics , Forkhead Transcription Factors/genetics , Inflammation/immunology , Interferon Regulatory Factors/biosynthesis , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiprotein Complexes/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Signal Transduction/immunology , TOR Serine-Threonine Kinases/metabolism , Thymocytes/cytology
14.
Nature ; 552(7683): 121-125, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29143824

ABSTRACT

T cell non-Hodgkin lymphomas are a heterogeneous group of highly aggressive malignancies with poor clinical outcomes. T cell lymphomas originate from peripheral T cells and are frequently characterized by genetic gain-of-function variants in T cell receptor (TCR) signalling molecules. Although these oncogenic alterations are thought to drive TCR pathways to induce chronic proliferation and cell survival programmes, it remains unclear whether T cells contain tumour suppressors that can counteract these events. Here we show that the acute enforcement of oncogenic TCR signalling in lymphocytes in a mouse model of human T cell lymphoma drives the strong expansion of these cells in vivo. However, this response is short-lived and robustly counteracted by cell-intrinsic mechanisms. A subsequent genome-wide in vivo screen using T cell-specific transposon mutagenesis identified PDCD1, which encodes the inhibitory receptor programmed death-1 (PD-1), as a master gene that suppresses oncogenic T cell signalling. Mono- and bi-allelic deletions of PDCD1 are also recurrently observed in human T cell lymphomas with frequencies that can exceed 30%, indicating high clinical relevance. Mechanistically, the activity of PD-1 enhances levels of the tumour suppressor PTEN and attenuates signalling by the kinases AKT and PKC in pre-malignant cells. By contrast, a homo- or heterozygous deletion of PD-1 allows unrestricted T cell growth after an oncogenic insult and leads to the rapid development of highly aggressive lymphomas in vivo that are readily transplantable to recipients. Thus, the inhibitory PD-1 receptor is a potent haploinsufficient tumour suppressor in T cell lymphomas that is frequently altered in human disease. These findings extend the known physiological functions of PD-1 beyond the prevention of immunopathology after antigen-induced T cell activation, and have implications for T cell lymphoma therapies and for current strategies that target PD-1 in the broader context of immuno-oncology.


Subject(s)
Carcinogenesis/genetics , Genes, Tumor Suppressor , Haploinsufficiency/genetics , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/pathology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Animals , Cells, Cultured , Female , Humans , Lymphoma, T-Cell/metabolism , Male , Mice , Mutation , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Signal Transduction/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
15.
Digestion ; 100(2): 127-138, 2019.
Article in English | MEDLINE | ID: mdl-30423561

ABSTRACT

BACKGROUND/AIMS: The gut microbiota is altered in irritable bowel syndrome (IBS), and microbiota manipulations by diet or antibiotics can reduce its symptoms. As fecal microbiota transfer (FMT) in IBS is still controversial, we investigated the clinical and side effects of FMT in a cohort of IBS patients with recurrent, treatment refractory symptoms, and studied gut microbiota signatures. METHODS: Using an observational, prospective study design, we applied FMTs from one unrelated, healthy donor to 13 IBS patients. Fecal samples of patients and the donor were analyzed by 16S ribosomal RNA amplicon sequencing. RESULTS: On a symptom level, primarily abdominal pain symptoms were reduced after FMT, and no adverse effects were observed. Studying the microbiome, we found an increase in alpha diversity and changes in the composition of the gut microbiota after FMT. Beta diversity changes after FMT were prominent in a subset of 7 patients with microbiota profiles coming very close to the donor. These patients also showed most pronounced visceral pain reduction. The relative abundance of Akkermansia muciniphila was inversely correlated with pain reduction in our cohort. CONCLUSION: Although exploratory in nature and with a pilot character, this study highlights the potential role of microbiota manipulations in IBS and describes a novel association of intestinal Akkermansia and pain modulation.


Subject(s)
Abdominal Pain/therapy , Fecal Microbiota Transplantation/methods , Feces/microbiology , Irritable Bowel Syndrome/therapy , Verrucomicrobia/isolation & purification , Abdominal Pain/diagnosis , Abdominal Pain/etiology , Adult , Akkermansia , DNA, Bacterial/isolation & purification , Female , Gastrointestinal Microbiome/genetics , Humans , Intestinal Mucosa/microbiology , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/microbiology , Male , Pain Measurement , Pilot Projects , Prospective Studies , RNA, Ribosomal, 16S/genetics , Treatment Outcome , Verrucomicrobia/genetics , Young Adult
16.
Am J Gastroenterol ; 113(10): 1475-1483, 2018 10.
Article in English | MEDLINE | ID: mdl-29535416

ABSTRACT

OBJECTIVES: Variants in patatin-like phospholipase domain-containing 3 (PNPLA3; rs738409), transmembrane 6 superfamily member 2 (TM6SF2; rs58542926), and membrane bound O-acyltransferase domain containing 7 (MBOAT7; rs641738) are risk factors for the development of alcohol-related cirrhosis. Within this population, PNPLA3 rs738409 is also an established risk factor for the development of hepatocellular carcinoma (HCC). The aim of this study was to explore possible risk associations of TM6SF2 rs58542926 and MBOAT7 rs641738 with HCC. METHODS: Risk variants in PNPLA3, TM6SF2, and MBOAT7 were genotyped in 751 cases with alcohol-related cirrhosis and HCC and in 1165 controls with alcohol-related cirrhosis without HCC. Association with the risk of developing HCC was analyzed using multivariate logistic regression. RESULTS: The development of HCC was independently associated with PNPLA3 rs738409 (ORadjusted 1.84 [95% CI 1.55-2.18], p = 1.85 × 10-12) and TM6SF2 rs58542926 (ORadjusted 1.66 [1.30-2.13], p = 5.13 × 10-05), using an additive model, and controlling the sex, age, body mass index, and type 2 diabetes mellitus; the risk associated with carriage of MBOAT7 rs641738 (ORadjusted 1.04 [0.88-1.24], p = 0.61) was not significant. The population-attributable fractions were 43.5% for PNPLA3 rs738409, 11.5% for TM6SF2 rs58542926, and 49.9% for the carriage of both the variants combined. CONCLUSIONS: Carriage of TM6SF2 rs58542926 is an additional risk factor for the development of HCC in people with alcohol-related cirrhosis. Carriage of both PNPLA3 rs738409 and TM6SF2 rs58542926 accounts for half of the attributable risk for HCC in this population. Genotyping will allow for more precise HCC risk-stratification of patients with alcohol-related cirrhosis, and genotype-guided screening algorithms would optimize patient care.


Subject(s)
Acyltransferases/genetics , Carcinoma, Hepatocellular/genetics , Lipase/genetics , Liver Cirrhosis, Alcoholic/genetics , Liver Neoplasms/genetics , Membrane Proteins/genetics , Aged , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Disease Progression , Europe , Female , Genetic Predisposition to Disease , Genotype , Humans , Liver/pathology , Liver Cirrhosis, Alcoholic/pathology , Liver Neoplasms/pathology , Male , Middle Aged , Polymorphism, Single Nucleotide
18.
Pediatr Allergy Immunol ; 29(8): 823-833, 2018 12.
Article in English | MEDLINE | ID: mdl-30102794

ABSTRACT

BACKGROUND: Asthma is the most common chronic disease in children. Underlying immunologic mechanisms-in particular of different phenotypes-are still just partly understood. The objective of the study was the identification of distinct cellular pathways in allergic asthmatics (AA) and nonallergic asthmatics (NA) vs healthy controls (HC). METHODS: Peripheral blood mononuclear cells (PBMCs) of steroid-naïve children (n(AA/NA/HC) = 35/13/34)) from the CLARA study (n = 275) were stimulated (anti-CD3/CD28, LpA) or kept unstimulated. Gene expression was investigated by transcriptomics and quantitative RT-PCR. Differentially regulated pathways between phenotypes were assessed after adjustment for sex and age (KEGG pathways). Networks based on correlations of gene expression were built using force-directed graph drawing. RESULTS: Allergic asthmatics vs NA and asthmatics overall vs HC showed significantly different expression of Ca2+ and innate immunity-associated pathways. PCR analysis confirmed significantly increased Ca2+ -associated gene regulation (ORMDL3 and ATP2A3) in asthmatics vs HC, most prominent in AA. Innate immunity receptors (LY75, TLR7), relevant for virus infection, were also upregulated in AA and NA compared to HC. AA and NA could be differentiated by increased ATP2A3 and FPR2 in AA, decreased CLEC4E in AA, and increased IFIH1 expression in NA following anti-CD3/28 stimulation vs unstimulated (fold change). CONCLUSIONS: Ca2+ regulation and innate immunity response pattern to viruses were activated in PBMCs of asthmatics. Asthma phenotypes were differentially characterized by distinct regulation of ATP2A3 and expression of innate immune receptors (FPR2, CLEC4E, IFIH1). These genes may present promising targets for future in-depth investigation with the long-term goal of more phenotype-specific therapeutic interventions in asthmatics.


Subject(s)
Asthma/metabolism , Calcium/metabolism , Immunity, Innate/genetics , Leukocytes, Mononuclear/metabolism , Adolescent , Asthma/immunology , Cell Culture Techniques , Child , Child, Preschool , Cytokines/metabolism , Female , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Male , Microarray Analysis/methods , Phenotype , Real-Time Polymerase Chain Reaction/methods , Signal Transduction
19.
PLoS Biol ; 11(10): e1001674, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24115907

ABSTRACT

TGF-ß is widely held to be critical for the maintenance and function of regulatory T (T(reg)) cells and thus peripheral tolerance. This is highlighted by constitutive ablation of TGF-ß receptor (TR) during thymic development in mice, which leads to a lethal autoimmune syndrome. Here we describe that TGF-ß-driven peripheral tolerance is not regulated by TGF-ß signalling on mature CD4⁺ T cells. Inducible TR2 ablation specifically on CD4⁺ T cells did not result in a lethal autoinflammation. Transfer of these TR2-deficient CD4⁺ T cells to lymphopenic recipients resulted in colitis, but not overt autoimmunity. In contrast, thymic ablation of TR2 in combination with lymphopenia led to lethal multi-organ inflammation. Interestingly, deletion of TR2 on mature CD4⁺ T cells does not result in the collapse of the T(reg) cell population as observed in constitutive models. Instead, a pronounced enlargement of both regulatory and effector memory T cell pools was observed. This expansion is cell-intrinsic and seems to be caused by increased T cell receptor sensitivity independently of common gamma chain-dependent cytokine signals. The expression of Foxp3 and other regulatory T cells markers was not dependent on TGF-ß signalling and the TR2-deficient T(reg) cells retained their suppressive function both in vitro and in vivo. In summary, absence of TGF-ß signalling on mature CD4⁺ T cells is not responsible for breakdown of peripheral tolerance, but rather controls homeostasis of mature T cells in adult mice.


Subject(s)
Homeostasis/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/metabolism , Animals , Autoimmunity/drug effects , Autoimmunity/immunology , Cell Proliferation/drug effects , Colitis/pathology , Gene Deletion , Homeostasis/drug effects , Inflammation/pathology , Integrases/metabolism , Lymphopenia/immunology , Lymphopenia/pathology , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Receptors, Antigen, T-Cell/metabolism , Reproducibility of Results , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects , Tamoxifen/pharmacology , Thymus Gland/drug effects , Thymus Gland/growth & development , Thymus Gland/pathology
20.
Proc Natl Acad Sci U S A ; 110(5): 1592-9, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23267082

ABSTRACT

Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.


Subject(s)
Cell Cycle/physiology , Circadian Clocks/physiology , DNA-Binding Proteins/metabolism , Period Circadian Proteins/metabolism , Animals , Blotting, Western , Cell Cycle/genetics , Cell Proliferation , Cells, Cultured , Cellular Senescence/genetics , Cellular Senescence/physiology , Circadian Clocks/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA-Binding Proteins/genetics , Dermis/metabolism , Dermis/pathology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Period Circadian Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Binding , RNA Interference , RNA-Binding Proteins , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/genetics , Trans-Activators/metabolism , Wound Healing/genetics , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL